X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Monday, April 27, 2020

Industrial Biotechnology Brochure: Fuel biotech discovery with confident characterization of microbes and their communities

Industrial microbiologists rely on comprehensive genomic information to identify and develop complex biological products. Single Molecule, Real-Time (SMRT) Sequencing delivers a more complete view of individual organisms and microbial communities, fueling research for modern pharmaceutical discovery, environmental remediation, chemical commodity production, and agriculture products.

Read More »

Monday, April 27, 2020

Technical Note: Preparing samples for PacBio whole genome sequencing for de novo assembly – Collection and storage

Single Molecule, Real-Time (SMRT) Sequencing uses the natural process of DNA replication to sequence long fragments of native DNA. As such, starting with high-quality, high molecular weight (HMW) genomic DNA (gDNA) will result in better sequencing performance across difficult to sequence regions of the genome. To obtain the highest quality, long DNA it is important to start with sample types compatible with HMW DNA extraction methods. This technical note is intended to give general guidance on sample collection, preparation, and storage across a range of commonly encountered sample types used for SMRT Sequencing whole genome projects. It is important to…

Read More »

Monday, April 27, 2020

Case Study: Diving Deep – Revealing the mysteries of marine life with SMRT Sequencing

Many scientists are using PacBio Single Molecule, Real-Time (SMRT) Sequencing to explore the genomes and transcriptomes of a wide variety of marine species and ecosystems. These studies are already adding to our understanding of how marine species adapt and evolve, contributing to conservation efforts, and informing how we can optimize food production through efficient aquaculture.

Read More »

Tuesday, April 21, 2020

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Antarcticibacterium flavum JB01H24T from an Antarctic marine sediment

Antarcticibacterium flavum JB01H24T was isolated from a marine sediment of the Ross Sea, Antarctica. Whole-genome sequencing of the strain Antarcticibacterium flavum JB01H24T was achieved using PacBio RS II platform. The resulting complete genome comprised of one closed, complete chromosome of 4,319,074 base pairs with a 40.87% G?+?C content, where genomic analyses demonstrated that it is constituted mostly by putative ORFs with unknown functions, representing a novel genetic feature. It is the first complete genome sequence of the Antarcticibacterium strain.

Read More »

Tuesday, April 21, 2020

Biochemical characterization of a novel cold-adapted agarotetraose-producing a-agarase, AgaWS5, from Catenovulum sediminis WS1-A.

Although many ß-agarases that hydrolyze the ß-1,4 linkages of agarose have been biochemically characterized, only three a-agarases that hydrolyze the a-1,3 linkages are reported to date. In this study, a new a-agarase, AgaWS5, from Catenovulum sediminis WS1-A, a new agar-degrading marine bacterium, was biochemically characterized. AgaWS5 belongs to the glycoside hydrolase (GH) 96 family. AgaWS5 consists of 1295 amino acids (140 kDa) and has the 65% identity to an a-agarase, AgaA33, obtained from an agar-degrading bacterium Thalassomonas agarivorans JAMB-A33. AgaWS5 showed the maximum activity at a pH and temperature of 8 and 40 °C, respectively. AgaWS5 showed a cold-tolerance, and…

Read More »

Tuesday, April 21, 2020

Genome-Wide Association Study of Growth and Body-Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea) Using ddRAD Sequencing.

Large yellow croaker (Larimichthys crocea) is an economically important marine fish species of China. Due to overfishing and marine pollution, the wild stocks of this croaker have collapsed in the past decades. Meanwhile, the cultured croaker is facing the difficulties of reduced genetic diversity and low growth rate. To explore the molecular markers related to the growth traits of croaker and providing the related SNPs for the marker-assisted selection, we used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic bases of growth traits in a cultured population and identify the SNPs that associated with important growth traits by…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Marinobacter sp. LQ44, a haloalkaliphilic phenol-degrading bacterium isolated from a deep-sea hydrothermal vent

Marinobacter sp. strain LQ44, an alkaliphile and moderate halophile from a deep-sea hydrothermal vent on the East Pacific Rise, is a novel phenol-degrading bacterium that is capable of utilizing phenol as sole carbon and energy sources. Here, we present the complete genome sequence of strain LQ44, which consists of 4,435,564?bp with a circular chromosome, 4164 protein-coding genes, 3 rRNA operons and 50 tRNAs. Genome analysis revealed that strain LQ44 may degrade phenol via meta-cleavage pathway. The LQ44 genome contains multiple genes involved in pH adaptation and osmotic adjustment. Genes related to hydrocarbon degradation, aerobic denitrification and potential industrial important enzymes…

Read More »

Tuesday, April 21, 2020

The Genome of the Zebra Mussel, Dreissena polymorpha: A Resource for Invasive Species Research

The zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves, with nearly 450 million years of divergence between zebra mussels and its closest sequenced relative. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate the highest quality molluscan assembly to date. Through comparative analysis and transcriptomics experiments we have gained insights into processes that…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments

Paracoccus sp. Arc7-R13, a silver nanoparticles (AgNPs) synthesizing bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Paracoccus sp. Arc7-R13. The complete genome contains 4,040,012?bp with 66.66?mol%?G?+?C content, including one circular chromosome of 3,231,929?bp (67.45?mol%?G?+?C content), and eight plasmids with length ranging from 24,536?bp to 199,685?bp. The genome contains 3835 protein-coding genes (CDSs), 49 tRNA genes, as well as 3 rRNA operons as 16S-23S-5S rRNA. Based on the gene annotation and Swiss-Prot analysis, a total of 15 genes belonging to 11 kinds, including silver exporting P-type ATPase (SilP), alkaline phosphatase, nitroreductase, thioredoxin reductase, NADPH dehydrogenase…

Read More »

Tuesday, April 21, 2020

Genomic analysis of Marinobacter sp. NP-4 and NP-6 isolated from the deep-sea oceanic crust on the western flank of the Mid-Atlantic Ridge

Two Marinobacter sp. NP-4 and NP-6 were isolated from a deep oceanic basaltic crust at North Pond, located at the western flank of the Mid-Atlantic Ridge. These two strains are capable of using multiple carbon sources such as acetate, succinate, glucose and sucrose while take oxygen as a primary electron acceptor. The strain NP-4 is also able to grow anaerobically under 20?MPa, with nitrate as the electron acceptor, thus represents a piezotolerant. To explore the metabolic potentials of Marinobacter sp. NP-4 and NP-6, the complete genome of NP-4 and close-to-complete genome of NP-6 were sequenced. The genome of NP-4 contains…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503 T, a marine psychrophilic bacterium isolated from Antarctica

A marine psychrophilic bacterium _Paenisporosarcina antarctica_ CGMCC 1.6503T (= JCM 14646T) was isolated off King George Island, Antarctica (62°13’31? S 58°57’08? W). In this study, we report the complete genome sequence of _Paenisporosarcina antarctica_, which is comprised of 3,972,524?bp with a mean G?+?C content of 37.0%. By gene function and metabolic pathway analyses, studies showed that strain CGMCC 1.6503T encodes a series of genes related to cold adaptation, including encoding fatty acid desaturases, dioxygenases, antifreeze proteins and cold shock proteins, and possesses several two-component regulatory systems, which could assist this strain in responding to the cold stress, the oxygen stress…

Read More »

Tuesday, April 21, 2020

Complete genome of a marine bacterium Vibrio chagasii ECSMB14107 with the ability to infect mussels

Vibrio strains are pervasive in the aquatic environment and may form pathogenic and symbiotic relationships with the host. Vibrio chagasii ECSMB14107 was isolated from natural biofilms and is used as a model to elucidate the role of Vibrio in hard-shelled mussel (Mytilus coruscus) settlement, health and disease. The genome of the Vibrio strain ECSMB14107, comprised of two circular chromosomes that together encompass 5,549,357?bp with a mean GC content of 44.39% was determined. Knowledge about the genome of V. chagasii ECSMB14107 will provide insight into its contribution to mussel development and health.

Read More »

Tuesday, April 21, 2020

Complete genome sequences of pooled genomic DNA from 10 marine bacteria using PacBio long-read sequencing.

High-quality, completed genomes are important to understand the functions of marine bacteria. PacBio sequencing technology provides a powerful way to obtain high-quality completed genomes. However individual library production is currently still costly, limiting the utility of the PacBio system for high-throughput genomics. Here we investigate how to generate high-quality genomes from pooled marine bacterial genomes.Pooled genomic DNA from 10 marine bacteria were subjected to a single library production and sequenced with eight SMRT cells on the PacBio RS II sequencing platform. In total, 7.35 Gbp of long-read data was generated, which is equivalent to an approximate 168× average coverage for…

Read More »

Tuesday, April 21, 2020

Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp.

Shewanella baltica 128 is a specific spoilage organism (SSO) isolated from the refrigerated shrimp that results in shrimp spoilage. This study reported the complete genome sequencing of this strain, with the primary annotations associated with amino acid transport and metabolism (8.66%), indicating that S. baltica 128 has good potential for degrading proteins. In vitro experiments revealed Shewanella baltica 128 could adapt to the stress conditions by regulating its growth and biofilm formation. Genes that related to the spoilage-related metabolic pathways, including trimethylamine metabolism (torT), sulfur metabolism (cysM), putrescine metabolism (speC), biofilm formation (rpoS) and serine protease production (degS), were identified.…

Read More »

1 2 3 11

Subscribe for blog updates:

Archives