Menu
April 21, 2020  |  

Complete genome sequence of Antarcticibacterium flavum JB01H24T from an Antarctic marine sediment

Antarcticibacterium flavum JB01H24T was isolated from a marine sediment of the Ross Sea, Antarctica. Whole-genome sequencing of the strain Antarcticibacterium flavum JB01H24T was achieved using PacBio RS II platform. The resulting complete genome comprised of one closed, complete chromosome of 4,319,074 base pairs with a 40.87% G?+?C content, where genomic analyses demonstrated that it is constituted mostly by putative ORFs with unknown functions, representing a novel genetic feature. It is the first complete genome sequence of the Antarcticibacterium strain.


April 21, 2020  |  

The Genome of the Zebra Mussel, Dreissena polymorpha: A Resource for Invasive Species Research

The zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves, with nearly 450 million years of divergence between zebra mussels and its closest sequenced relative. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate the highest quality molluscan assembly to date. Through comparative analysis and transcriptomics experiments we have gained insights into processes that likely control the invasive success of zebra mussels, including shell formation, synthesis of byssal threads, and thermal tolerance. We identified multiple intact Steamer-Like Elements, a retrotransposon that has been linked to transmissible cancer in marine clams. We also found that D. polymorpha have an unusual 67 kb mitochondrial genome containing numerous tandem repeats, making it the largest observed in Eumetazoa. Together these findings create a rich resource for invasive species research and control efforts.


April 21, 2020  |  

Complete genome of a marine bacterium Vibrio chagasii ECSMB14107 with the ability to infect mussels

Vibrio strains are pervasive in the aquatic environment and may form pathogenic and symbiotic relationships with the host. Vibrio chagasii ECSMB14107 was isolated from natural biofilms and is used as a model to elucidate the role of Vibrio in hard-shelled mussel (Mytilus coruscus) settlement, health and disease. The genome of the Vibrio strain ECSMB14107, comprised of two circular chromosomes that together encompass 5,549,357?bp with a mean GC content of 44.39% was determined. Knowledge about the genome of V. chagasii ECSMB14107 will provide insight into its contribution to mussel development and health.


April 21, 2020  |  

Complete genome of Pseudomonas sp. DMSP-1 isolated from the Arctic seawater of Kongsfjorden, Svalbard

The genus Pseudomonas is highly metabolically diverse and has colonized a wide range of ecological niches. The strain Pseudomonas sp. DMSP-1 was isolated from Arctic seawater (Kongsfjorden, Svalbard) using dimethylsulfoniopropionate (DMSP) as the sole carbon source. To better understand its role in the Arctic coastal ecosystem, the genome of Pseudomonas sp. strain DMSP-1 was completely sequenced. The genome contained a circular chromosome of 6,282,445?bp with an average GC content of 60.01?mol%. A total of 5510 protein coding genes, 70 tRNA genes and 19 rRNA genes were obtained. However, no genes encoding known enzymes associated with DMSP catabolism were identified in the genome, suggesting that novel DMSP degradation genes might exist in Pseudomonas sp. strain DMSP-1.


April 21, 2020  |  

Strengths and potential pitfalls of hay-transfer for ecological restoration revealed by RAD-seq analysis in floodplain Arabis species

Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long-term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay-transfer between 1997 and 2014. RAD-seq genotyping revealed that the stenoecious flood-plain species Arabis nemorensis is co-occurring with individuals that, based on ploidy, ITS-sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay-transfer maintains genetic diversity for both species. Additionally, in A. sagittata, transfer from multiple genetically isolated pristine sites resulted in restored sites with increased diversity and admixed local genotypes. In A. nemorensis, transfer did not create novel admixture dynamics because genetic diversity between pristine sites was less differentiated. Thus, the effects of hay-transfer on genetic diversity also depend on the genetic makeup of the donor communities of each species, especially when local material is mixed. Our results demonstrate the efficiency of hay-transfer for habitat restoration and emphasize the importance of pre-restoration characterization of micro-geographic patterns of intraspecific diversity of the community to guarantee that restoration practices reach their goal, i.e. maximize the adaptive potential of the entire restored plant community. Overlooking these patterns may alter the balance between species in the community. Additionally, our comparison of summary statistics obtained from de novo and reference-based RAD-seq pipelines shows that the genomic impact of restoration can be reliably monitored in species lacking prior genomic knowledge.


April 21, 2020  |  

A microbial factory for defensive kahalalides in a tripartite marine symbiosis.

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a factory for kahalalide production. This interaction between a bacterium, an alga, and an animal highlights the importance of chemical defense in the evolution of complex symbioses.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Draft Genome Sequences of 38 Serratia marcescens Isolates Associated with Acroporid Serratiosis.

Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources. The availability of these genomes will aid future analyses of acroporid serratiosis. Copyright © 2019 Elledge et al.


April 21, 2020  |  

Chromosomal-level assembly of the blolsod clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C.

The blood clam, Scapharca (Anadara) broughtonii, is an economically and ecologically important marine bivalve of the family Arcidae. Efforts to study their population genetics, breeding, cultivation, and stock enrichment have been somewhat hindered by the lack of a reference genome. Herein, we report the complete genome sequence of S. broughtonii, a first reference genome of the family Arcidae.A total of 75.79 Gb clean data were generated with the Pacific Biosciences and Oxford Nanopore platforms, which represented approximately 86× coverage of the S. broughtonii genome. De novo assembly of these long reads resulted in an 884.5-Mb genome, with a contig N50 of 1.80 Mb and scaffold N50 of 45.00 Mb. Genome Hi-C scaffolding resulted in 19 chromosomes containing 99.35% of bases in the assembled genome. Genome annotation revealed that nearly half of the genome (46.1%) is composed of repeated sequences, while 24,045 protein-coding genes were predicted and 84.7% of them were annotated.We report here a chromosomal-level assembly of the S. broughtonii genome based on long-read sequencing and Hi-C scaffolding. The genomic data can serve as a reference for the family Arcidae and will provide a valuable resource for the scientific community and aquaculture sector. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication.

For over a thousand years, the common goldfish (Carassius auratus) was raised throughout Asia for food and as an ornamental pet. As a very close relative of the common carp (Cyprinus carpio), goldfish share the recent genome duplication that occurred approximately 14 million years ago in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies provides an exciting opportunity to link genotype to phenotype and to understand the dynamics of genome evolution and speciation. We generated a high-quality draft sequence and gene annotations of a “Wakin” goldfish using 71X PacBio long reads. The two subgenomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged substantially across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression levels across all tissues, while loss of conserved noncoding elements determined expression variance between different tissues. This assembly provides an important resource for comparative genomics and understanding the causes of goldfish variants.


April 21, 2020  |  

Sensory receptor repertoire in cyprid antennules of the barnacle Balanus improvisus.

Barnacle settlement involves sensing of a variety of exogenous cues. A pair of antennules is the main sensory organ that the cyprid larva uses to explore the surface. Antennules are equipped with a number of setae that have both chemo- and mechanosensing function. The current study explores the repertoire of sensory receptors in Balanus improvisus cyprid antennules with the goal to better understand sensory systems involved in the settling behavior of this species. We carried out transcriptome sequencing of dissected B. improvisus cyprid antennules. The generated transcriptome assembly was used to search for sensory receptors using HMM models. Among potential chemosensory genes, we identified the ionotropic receptors IR25a, IR8a and IR93a, and several divergent IR candidates to be expressed in the cyprid antennules. We found one gustatory-like receptor but no odorant receptors, chemosensory or odorant-binding proteins. Apart from chemosensory receptors, we also identified 13 potential mechanosensory genes represented by several transient receptor potential channels (TRP) subfamilies. Furthermore, we analyzed changes in expression profiles of IRs and TRPs during the B. improvisus settling process. Several of the sensory genes were differentially expressed during the course of larval settlement. This study gives expanded knowledge about the sensory systems present in barnacles, a taxonomic group for which only limited information about receptors is currently available. It furthermore serves as a starting point for more in depth studies of how sensory signaling affects settling behavior in barnacles with implications for preventing biofouling.


April 21, 2020  |  

Morphotypes of the common beadlet anemone Actinia equina (L.) are genetically distinct

Anemones of the genus Actinia are ecologically important and familiar organisms on many rocky shores. However, this genus is taxonomically problematical and prior evidence suggests that the North Atlantic beadlet anemone, Actinia equina, may actually consist of a number of cryptic species. Previous genetic work has been largely limited to allozyme electrophoresis and there remains a dearth of genetic resources with which to study this genus. Mitochondrial DNA sequencing may help to clarify the taxonomy of Actinia. Here, the complete mitochondrial genome of the beadlet anemone Actinia equina (Cnidaria: Anthozoa: Actinaria: Actiniidae) is shown to be 20,690?bp in length and to contain the standard complement of Cnidarian features including 13 protein coding genes, two rRNA genes, two tRNAs and two Group I introns, one with an in-frame truncated homing endonuclease gene open reading frame. However, amplification and sequencing of the standard mtDNA barcoding region of the cytochrome oxidase I gene revealed only two haplotypes, differing by a single base pair, in widely geographically separated A. equina and its congener A. prasina. COI barcoding shows that whilst A. equina and A. prasina share the common mtDNA haplotype, haplotype frequency differed significantly between A. equina with red/orange pedal discs and those with green pedal discs, consistent with the hypothesis that these morphotypes represent incipient species.


April 21, 2020  |  

Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin

Streptomyes spongiicola HNM0071T is a novel marine sponge-associated actinomycete with potential to produce antitumor agents including staurosporine and echinomycin. Here, we present the complete genome sequence of S. spongiicola HNM0071, which consists of a linear chromosome of 7,180,417?bp, 5669 protein coding genes, 18 rRNA genes, and 66 tRNA genes. Twenty-seven putative secondary metabolite biosynthetic gene clusters were found in the genome. Among them, the staurosporine and echinomycin gene clusters have been described completely. The complete genome information presented here will enable us to investigate the biosynthetic mechanism of two well-known antitumor antibiotics and to discover novel secondary metabolites with potential antitumor activities.


April 21, 2020  |  

Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula.

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C-based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein-coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


April 21, 2020  |  

The rising tide of high-quality genomic resources.

Few images are more iconic of coral reef ecosystems than an orange clownfish (Amphiprion percula) nestled among the tentacles of its mutualistic partner, the sea anemone (Figure 1a). Popularized as the Disney character, “Nemo,” clownfish are more than a charismatic on- screen presence. Among biologists, they are an ecological and evolutionary research model, shedding light on everything from social organization (Wong, Uppaluri, Medina, Seymour, & Buston, 2016) to mutualisms (Schmiege, D’Aloia, & Buston, 2017). Now, clownfish have yet another reason to be in the spotlight.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.