Menu
April 21, 2020

Hybrid-Transcriptome Sequencing and Associated Metabolite Analysis Reveal Putative Genes Involved in Flower Color Difference in Rose Mutants.

Gene mutation is a common phenomenon in nature that often leads to phenotype differences, such as the variations in flower color that frequently occur in roses. With the aim of revealing the genomic information and inner mechanisms, the differences in the levels of both transcription and secondary metabolism between a pair of natural rose mutants were investigated by using hybrid RNA-sequencing and metabolite analysis. Metabolite analysis showed that glycosylated derivatives of pelargonidin, e.g., pelargonidin 3,5 diglucoside and pelargonidin 3-glucoside, which were not detected in white flowers (Rosa ‘Whilte Mrago Koster’), constituted the major pigments in pink flowers. Conversely, the flavonol contents of petal, such as kaempferol-3-glucoside, quercetin 3-glucoside, and rutin, were higher in white flowers. Hybrid RNA-sequencing obtained a total of 107,280 full-length transcripts in rose petal which were annotated in major databases. Differentially expressed gene (DEG) analysis showed that the expression of genes involved in the flavonoid biosynthesis pathway was significantly different, e.g., CHS, FLS, DFR, LDOX, which was verified by qRT-PCR during flowering. Additionally, two MYB transcription factors were found and named RmMYBAN2 and RmMYBPA1, and their expression patterns during flowering were also analyzed. These findings indicate that these genes may be involved in the flower color difference in the rose mutants, and competition between anthocyanin and flavonol biosynthesis is a primary cause of flower color variation, with its regulation reflected by transcriptional and secondary metabolite levels.


April 21, 2020

Large Plasmid Complement Resolved: Complete Genome Sequencing of Lactobacillus plantarum MF1298, a Candidate Probiotic Strain Associated with Unfavorable Effect.

Considerable attention has been given to the species Lactobacillus plantarum regarding its probiotic potential. L. plantarum strains have shown health benefits in several studies, and even nonstrain-specific claims are allowed in certain markets. L. plantarum strain MF1298 was considered a candidate probiotic, demonstrating in vitro probiotic properties and the ability to survive passage through the human intestinal tract. However, the strain showed an unfavorable effect on symptoms in subjects with irritable bowel syndrome in a clinical trial. The properties and the genome of this strain are thus of general interest. Obtaining the complete genome of strain MF1298 proved difficult due to its large plasmid complement. Here, we exploit a combination of sequencing approaches to obtain the complete chromosome and plasmid assemblies of MF1298. The Oxford Nanopore Technologies MinION long-read sequencer was particularly useful in resolving the unusually large number of plasmids in the strain, 14 in total. The complete genome sequence of 3,576,440 basepairs contains 3272 protein-encoding genes, of which 315 are located on plasmids. Few unique regions were found in comparison with other L. plantarum genomes. Notably, however, one of the plasmids contains genes related to vitamin B12 (cobalamin) turnover and genes encoding bacterial reverse transcriptases, features not previously reported for L. plantarum. The extensive plasmid information will be important for future studies with this strain.


April 21, 2020

Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity.

Rapid innovation in sequencing technologies and improvement in assembly algorithms have enabled the creation of highly contiguous mammalian genomes. Here we report a chromosome-level assembly of the water buffalo (Bubalus bubalis) genome using single-molecule sequencing and chromatin conformation capture data. PacBio Sequel reads, with a mean length of 11.5?kb, helped to resolve repetitive elements and generate sequence contiguity. All five B. bubalis sub-metacentric chromosomes were correctly scaffolded with centromeres spanned. Although the index animal was partly inbred, 58% of the genome was haplotype-phased by FALCON-Unzip. This new reference genome improves the contig N50 of the previous short-read based buffalo assembly more than a thousand-fold and contains only 383 gaps. It surpasses the human and goat references in sequence contiguity and facilitates the annotation of hard to assemble gene clusters such as the major histocompatibility complex (MHC).


April 21, 2020

Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing.

Nanopore sequencing from Oxford Nanopore Technologies (ONT) and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) long-read isoform sequencing (Iso-Seq) are revolutionizing the way transcriptomes are analyzed. These methods offer many advantages over most widely used high-throughput short-read RNA sequencing (RNA-Seq) approaches and allow a comprehensive analysis of transcriptomes in identifying full-length splice isoforms and several other post-transcriptional events. In addition, direct RNA-Seq provides valuable information about RNA modifications, which are lost during the PCR amplification step in other methods. Here, we present a comprehensive summary of important applications of these technologies in plants, including identification of complex alternative splicing (AS), full-length splice variants, fusion transcripts, and alternative polyadenylation (APA) events. Furthermore, we discuss the impact of the newly developed nanopore direct RNA-Seq in advancing epitranscriptome research in plants. Additionally, we summarize computational tools for identifying and quantifying full-length isoforms and other co/post-transcriptional events and discussed some of the limitations with these methods. Sequencing of transcriptomes using these new single-molecule long-read methods will unravel many aspects of transcriptome complexity in unprecedented ways as compared to previous short-read sequencing approaches. Analysis of plant transcriptomes with these new powerful methods that require minimum sample processing is likely to become the norm and is expected to uncover novel co/post-transcriptional gene regulatory mechanisms that control biological outcomes during plant development and in response to various stresses.


April 21, 2020

Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1.

Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus comprises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure analyses of this genus. Our recent work indicated a sequence gap (>?1 kb) in the mt genomes of E. granulosus genotype G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to define the complete mt genome, irrespective of structural complexities, using a long-read sequencing method.We extracted high molecular weight genomic DNA from protoscoleces from a single cyst of E. granulosus genotype G1 from a sheep from Australia using a conventional method and sequenced it using PacBio Sequel (long-read) technology, complemented by BGISEQ-500 short-read sequencing. Sequence data obtained were assembled using a recently-developed workflow.We assembled a complete mt genome sequence of 17,675 bp, which is >?4 kb larger than the complete mt genomes known for E. granulosus genotype G1. This assembly includes a previously-elusive tandem repeat region, which is 4417 bp long and consists of ten near-identical 441-445 bp repeat units, each harbouring a 184 bp non-coding region and adjacent regions. We also identified a short non-coding region of 183 bp, which includes an inverted repeat.We report what we consider to be the first complete mt genome of E. granulosus genotype G1 and characterise all repeat regions in this genome. The numbers, sizes, sequences and functions of tandem repeat regions remain to be studied in different isolates of genotype G1 and in other genotypes and species. The discovery of such ‘new’ repeat elements in the mt genome of genotype G1 by PacBio sequencing raises a question about the completeness of some published genomes of taeniid cestodes assembled from conventional or short-read sequence datasets. This study shows that long-read sequencing readily overcomes the challenges of assembling repeat elements to achieve improved genomes.


April 21, 2020

Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects.

Drosophila subobscura has long been a central model in evolutionary genetics. Presently, its use is hindered by the lack of a reference genome. To bridge this gap, here we used PacBio long-read technology, together with the available wealth of genetic marker information, to assemble and annotate a high-quality nuclear and complete mitochondrial genome for the species. With the obtained assembly, we performed the first synteny analysis of genome structure evolution in the subobscura subgroup.We generated a highly-contiguous ~?129?Mb-long nuclear genome, consisting of six pseudochromosomes corresponding to the six chromosomes of a female haploid set, and a complete 15,764?bp-long mitogenome, and provide an account of their numbers and distributions of codifying and repetitive content. All 12 identified paracentric inversion differences in the subobscura subgroup would have originated by chromosomal breakage and repair, with some associated duplications, but no evidence of direct gene disruptions by the breakpoints. Between lineages, inversion fixation rates were 10 times higher in continental D. subobscura than in the two small oceanic-island endemics D. guanche and D. madeirensis. Within D. subobscura, we found contrasting ratios of chromosomal divergence to polymorphism between the A sex chromosome and the autosomes.We present the first high-quality, long-read sequencing of a D. subobscura genome. Our findings generally support genome structure evolution in this species being driven indirectly, through the inversions’ recombination-suppression effects in maintaining sets of adaptive alleles together in the face of gene flow. The resources developed will serve to further establish the subobscura subgroup as model for comparative genomics and evolutionary indicator of global change.


April 21, 2020

Improving the sensitivity of long read overlap detection using grouped short k-mer matches.

Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than second-generation sequencing technologies such as Illumina. The increased read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and characterize the intra-species variations. It also holds the promise to decipher the community structure in complex microbial communities because long reads help metagenomic assembly. One key step in genome assembly using long reads is to quickly identify reads forming overlaps. Because PacBio data has higher sequencing error rate and lower coverage than popular short read sequencing technologies (such as Illumina), efficient detection of true overlaps requires specially designed algorithms. In particular, there is still a need to improve the sensitivity of detecting small overlaps or overlaps with high error rates in both reads. Addressing this need will enable better assembly for metagenomic data produced by third-generation sequencing technologies.In this work, we designed and implemented an overlap detection program named GroupK, for third-generation sequencing reads based on grouped k-mer hits. While using k-mer hits for detecting reads’ overlaps has been adopted by several existing programs, our method uses a group of short k-mer hits satisfying statistically derived distance constraints to increase the sensitivity of small overlap detection. Grouped k-mer hit was originally designed for homology search. We are the first to apply group hit for long read overlap detection. The experimental results of applying our pipeline to both simulated and real third-generation sequencing data showed that GroupK enables more sensitive overlap detection, especially for datasets of low sequencing coverage.GroupK is best used for detecting small overlaps for third-generation sequencing data. It provides a useful supplementary tool to existing ones for more sensitive and accurate overlap detection. The source code is freely available at https://github.com/Strideradu/GroupK .


April 21, 2020

The sequencing and de novo assembly of the Larimichthys crocea genome using PacBio and Hi-C technologies.

Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an “iconic” marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86?Mb and a contig N50 length of 2.83?Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67?Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea.


April 21, 2020

The sequence and de novo assembly of Takifugu bimaculatus genome using PacBio and Hi-C technologies.

Takifugu bimaculatus is a native teleost species of the southeast coast of China where it has been cultivated as an important edible fish in the last decade. Genetic breeding programs, which have been recently initiated for improving the aquaculture performance of T. bimaculatus, urgently require a high-quality reference genome to facilitate genome selection and related genetic studies. To address this need, we produced a chromosome-level reference genome of T. bimaculatus using the PacBio single molecule sequencing technique (SMRT) and High-through chromosome conformation capture (Hi-C) technologies. The genome was assembled into 2,193 contigs with a total length of 404.21?Mb and a contig N50 length of 1.31?Mb. After chromosome-level scaffolding, 22 chromosomes with a total length of 371.68?Mb were constructed. Moreover, a total of 21,117 protein-coding genes and 3,471 ncRNAs were annotated in the reference genome. The highly accurate, chromosome-level reference genome of T. bimaculatus provides an essential genome resource for not only the genome-scale selective breeding of T. bimaculatus but also the exploration of the evolutionary basis of the speciation and local adaptation of the Takifugu genus.


April 21, 2020

De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission.

The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora.Based on the combined use of the Illumina and PacBio sequencing technologies, we produced a highly contiguous transcriptome database from T. cystophora. We then developed a software program to discover neuropeptide preprohormones in this database. This script enabled us to annotate seven novel T. cystophora neuropeptide preprohormone cDNAs: One coding for 19 copies of a peptide with the structure pQWLRGRFamide; one coding for six copies of a different RFamide peptide; one coding for six copies of pQPPGVWamide; one coding for eight different neuropeptide copies with the C-terminal LWamide sequence; one coding for thirteen copies of a peptide with the RPRAamide C-terminus; one coding for four copies of a peptide with the C-terminal GRYamide sequence; and one coding for seven copies of a cyclic peptide, of which the most frequent one has the sequence CTGQMCWFRamide. We could also identify orthologs of these seven preprohormones in the cubozoans Alatina alata, Carybdea xaymacana, Chironex fleckeri, and Chiropsalmus quadrumanus. Furthermore, using TBLASTN screening, we could annotate four bursicon-like glycoprotein hormone subunits, five opsins, and 52 other family-A G protein-coupled receptors (GPCRs), which also included two leucine-rich repeats containing G protein-coupled receptors (LGRs) in T. cystophora. The two LGRs are potential receptors for the glycoprotein hormones, while the other GPCRs are candidate receptors for the above-mentioned neuropeptides.By combining Illumina and PacBio sequencing technologies, we have produced a new high-quality de novo transcriptome assembly from T. cystophora that should be a valuable resource for identifying the neuronal components that are involved in vision and other behaviors in cubomedusae.


April 21, 2020

Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community.

DNA methylation plays important roles in prokaryotes, and their genomic landscapes-prokaryotic epigenomes-have recently begun to be disclosed. However, our knowledge of prokaryotic methylation systems is focused on those of culturable microbes, which are rare in nature. Here, we used single-molecule real-time and circular consensus sequencing techniques to reveal the ‘metaepigenomes’ of a microbial community in the largest lake in Japan, Lake Biwa. We reconstructed 19 draft genomes from diverse bacterial and archaeal groups, most of which are yet to be cultured. The analysis of DNA chemical modifications in those genomes revealed 22 methylated motifs, nine of which were novel. We identified methyltransferase genes likely responsible for methylation of the novel motifs, and confirmed the catalytic specificities of four of them via transformation experiments using synthetic genes. Our study highlights metaepigenomics as a powerful approach for identification of the vast unexplored variety of prokaryotic DNA methylation systems in nature.


April 21, 2020

Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation.

We describe a method that adds long-read sequencing to a mix of technologies used to assemble a highly complex cattle rumen microbial community, and provide a comparison to short read-based methods. Long-read alignments and Hi-C linkage between contigs support the identification of 188 novel virus-host associations and the determination of phage life cycle states in the rumen microbial community. The long-read assembly also identifies 94 antimicrobial resistance genes, compared to only seven alleles in the short-read assembly. We demonstrate novel techniques that work synergistically to improve characterization of biological features in a highly complex rumen microbial community.


April 21, 2020

Pentatricopeptide repeat poly(A) binding protein KPAF4 stabilizes mitochondrial mRNAs in Trypanosoma brucei.

In Trypanosoma brucei, most mitochondrial mRNAs undergo editing, and 3′ adenylation and uridylation. The internal sequence changes and terminal extensions are coordinated: pre-editing addition of the short (A) tail protects the edited transcript against 3′-5′ degradation, while post-editing A/U-tailing renders mRNA competent for translation. Participation of a poly(A) binding protein (PABP) in coupling of editing and 3′ modification processes has been inferred, but its identity and mechanism of action remained elusive. We report identification of KPAF4, a pentatricopeptide repeat-containing PABP which sequesters the A-tail and impedes mRNA degradation. Conversely, KPAF4 inhibits uridylation of A-tailed transcripts and, therefore, premature A/U-tailing of partially-edited mRNAs. This quality check point likely prevents translation of incompletely edited mRNAs. We also find that RNA editing substrate binding complex (RESC) mediates the interaction between the 5′ end-bound pyrophosphohydrolase MERS1 and 3′ end-associated KPAF4 to enable mRNA circularization. This event appears to be critical for edited mRNA stability.


April 21, 2020

Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.

Complete and contiguous genome assemblies greatly improve the quality of subsequent systems-wide functional profiling studies and the ability to gain novel biological insights. While a de novo genome assembly of an isolated bacterial strain is in most cases straightforward, more informative data about co-existing bacteria as well as synergistic and antagonistic effects can be obtained from a direct analysis of microbial communities. However, the complexity of metagenomic samples represents a major challenge. While third generation sequencing technologies have been suggested to enable finished metagenome-assembled genomes, to our knowledge, the complete genome assembly of all dominant strains in a microbiome sample has not been demonstrated. Natural whey starter cultures (NWCs) are used in cheese production and represent low-complexity microbiomes. Previous studies of Swiss Gruyère and selected Italian hard cheeses, mostly based on amplicon metagenomics, concurred that three species generally pre-dominate: Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus delbrueckii.Two NWCs from Swiss Gruyère producers were subjected to whole metagenome shotgun sequencing using the Pacific Biosciences Sequel and Illumina MiSeq platforms. In addition, longer Oxford Nanopore Technologies MinION reads had to be generated for one to resolve repeat regions. Thereby, we achieved the complete assembly of all dominant bacterial genomes from these low-complexity NWCs, which was corroborated by a 16S rRNA amplicon survey. Moreover, two distinct L. helveticus strains were successfully co-assembled from the same sample. Besides bacterial chromosomes, we could also assemble several bacterial plasmids and phages and a corresponding prophage. Biologically relevant insights were uncovered by linking the plasmids and phages to their respective host genomes using DNA methylation motifs on the plasmids and by matching prokaryotic CRISPR spacers with the corresponding protospacers on the phages. These results could only be achieved by employing long-read sequencing data able to span intragenomic as well as intergenomic repeats.Here, we demonstrate the feasibility of complete de novo genome assembly of all dominant strains from low-complexity NWCs based on whole metagenomics shotgun sequencing data. This allowed to gain novel biological insights and is a fundamental basis for subsequent systems-wide omics analyses, functional profiling and phenotype to genotype analysis of specific microbial communities.


April 21, 2020

Complete genome sequence of 3-chlorobenzoate-degrading bacterium Cupriavidus necator NH9 and reclassification of the strains of the genera Cupriavidus and Ralstonia based on phylogenetic and whole-genome sequence analyses.

Cupriavidus necator NH9, a 3-chlorobenzoate (3-CB)-degrading bacterium, was isolated from soil in Japan. In this study, the complete genome sequence of NH9 was obtained via PacBio long-read sequencing to better understand the genetic components contributing to the strain’s ability to degrade aromatic compounds, including 3-CB. The genome of NH9 comprised two circular chromosomes (4.3 and 3.4 Mb) and two circular plasmids (427 and 77 kb) containing 7,290 coding sequences, 15 rRNA and 68 tRNA genes. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the protein-coding sequences in NH9 revealed a capacity to completely degrade benzoate, 2-, 3-, or 4-hydroxybenzoate, 2,3-, 2,5-, or 3,4-dihydroxybenzoate, benzoylformate, and benzonitrile. To validate the identification of NH9, phylogenetic analyses (16S rRNA sequence-based tree and multilocus sequence analysis) and whole-genome sequence analyses (average nucleotide identity, percentage of conserved proteins, and tetra-nucleotide analyses) were performed, confirming that NH9 is a C. necator strain. Over the course of our investigation, we noticed inconsistencies in the classification of several strains that were supposed to belong to the two closely-related genera Cupriavidus and Ralstonia. As a result of whole-genome sequence analysis of 46 Cupriavidus strains and 104 Ralstonia strains, we propose that the taxonomic classification of 41 of the 150 strains should be changed. Our results provide a clear delineation of the two genera based on genome sequences, thus allowing taxonomic identification of strains belonging to these two genera.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.