Menu
September 22, 2019  |  

Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications.

Moso bamboo (Phyllostachys edulis) is a well-known bamboo species of high economic value in the textile industry due to its rapid growth. Phytohormones, which are master regulators of growth and development, serve as important endogenous signals. However, the mechanisms through which phytohormones regulate growth in moso bamboo remain unknown to date.Here, we reported that exogenous gibberellins (GA) applications resulted in a significantly increased internode length and lignin condensation. Transcriptome sequencing revealed that photosynthesis-related genes were enriched in the GA-repressed gene class, which was consistent with the decrease in leaf chlorophyll concentrations and the lower rate of photosynthesis following GA treatment. Exogenous GA applications on seedlings are relatively easy to perform, thus we used 4-week-old whole seedlings of bamboo for GA- treatment followed by high throughput sequencing. In this study, we identified 932 cis-nature antisense transcripts (cis-NATs), and 22,196 alternative splicing (AS) events in total. Among them, 42 cis-nature antisense transcripts (cis-NATs) and 442 AS events were differentially expressed upon exposure to exogenous GA3, suggesting that post-transcriptional regulation might be also involved in the GA3 response. Targets of differential expression of cis-NATs included genes involved in hormone receptor, photosynthesis and cell wall biogenesis. For example, LAC4 and its corresponding cis-NATs were GA3-induced, and may be involved in the accumulation of lignin, thus affecting cell wall composition.This study provides novel insights illustrating how GA alters post-transcriptional regulation and will shed light on the underlying mechanism of growth modulated by GA in moso bamboo.


September 22, 2019  |  

Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

Switchgrass (Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts.We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures.Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.


September 22, 2019  |  

Long non-coding RNA identification: comparing machine learning based tools for long non-coding transcripts discrimination

Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and obtaining a more reliable result.


September 22, 2019  |  

Emergence, retention and selection: A trilogy of origination for functional de novo proteins from ancestral lncRNAs in primates.

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.


September 22, 2019  |  

Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data.

In this study, we established a general framework to use PacBio full-length transcriptome sequencing for the investigation of mitochondrial RNAs. As a result, we produced the first full-length human mitochondrial transcriptome using public PacBio data and characterized the human mitochondrial genome with more comprehensive and accurate information. Other results included determination of the H-strand primary transcript, identification of the ND5/ND6AS/tRNAGluAS transcript, discovery of palindrome small RNAs (psRNAs) and construction of the “mitochondrial cleavage” model, etc. These results reported for the first time in this study fundamentally changed annotations of human mitochondrial genome and enriched knowledge in the field of animal mitochondrial studies. The most important finding was two novel long non-coding RNAs (lncRNAs) of MDL1 and MDL1AS exist ubiquitously in animal mitochondrial genomes. Copyright © 2017. Published by Elsevier B.V.


September 22, 2019  |  

The small peptide world in long noncoding RNAs.

Long noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides (nt) without coding potential. Over the past decade, tens of thousands of novel lncRNAs have been annotated in animal and plant genomes because of advanced high-throughput RNA sequencing technologies and with the aid of coding transcript classifiers. Further, a considerable number of reports have revealed the existence of stable, functional small peptides (also known as micropeptides), translated from lncRNAs. In this review, we discuss the methods of lncRNA classification, the investigations regarding their coding potential and the functional significance of the peptides they encode.


September 22, 2019  |  

Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing.

Zea mays is an important genetic model for elucidating transcriptional networks. Uncertainties about the complete structure of mRNA transcripts limit the progress of research in this system. Here, using single-molecule sequencing technology, we produce 111,151 transcripts from 6 tissues capturing ~70% of the genes annotated in maize RefGen_v3 genome. A large proportion of transcripts (57%) represent novel, sometimes tissue-specific, isoforms of known genes and 3% correspond to novel gene loci. In other cases, the identified transcripts have improved existing gene models. Averaging across all six tissues, 90% of the splice junctions are supported by short reads from matched tissues. In addition, we identified a large number of novel long non-coding RNAs and fusion transcripts and found that DNA methylation plays an important role in generating various isoforms. Our results show that characterization of the maize B73 transcriptome is far from complete, and that maize gene expression is more complex than previously thought.


September 22, 2019  |  

SMRT sequencing of full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt).

This study was aimed at generating the full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt) using single-molecule real-time (SMRT) sequencing. Four developmental stages of A. hygrophila, including eggs, larvae, pupae, and adults were harvested for isolating total RNA. The mixed samples were used for SMRT sequencing to generate the full-length transcriptome. Based on the obtained transcriptome data, alternative splicing event, simple sequence repeat (SSR) analysis, coding sequence prediction, transcript functional annotation, and lncRNA prediction were performed. Total 9.45?Gb of clean reads were generated, including 335,045 reads of insert (ROI) and 158,085 full-length non-chimeric (FLNC) reads. Transcript clustering analysis of FLNC reads identified 40,004 consensus isoforms, including 31,015 high-quality ones. After removing redundant reads, 28,982 transcripts were obtained. Total 145 alternative splicing events were predicted. Additionally, 12,753 SSRs and 16,205 coding sequences were identified based on SSR analysis. Furthermore, 24,031 transcripts were annotated in eight functional databases, and 4,198 lncRNAs were predicted. This is the first study to perform SMRT sequencing of the full-length transcriptome of A. hygrophila. The obtained transcriptome may facilitate further exploration of the genetic data of A. hygrophila and uncover the interactions between this insect and the ecosystem.


September 22, 2019  |  

High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing.

Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.


September 22, 2019  |  

Generation and comparative analysis of full-length transcriptomes in sweetpotato and its putative wild ancestor I. trifida.

Sweetpotato [Ipomoea batatas (L.) Lam.] is one of the most important crops in many developing countries and provides a candidate source of bioenergy. However, neither high-quality reference genome nor large-scale full-length cDNA sequences for this outcrossing hexaploid are still lacking, which in turn impedes progress in research studies in sweetpotato functional genomics and molecular breeding. In this study, we apply a combination of second- and third-generation sequencing technologies to sequence full-length transcriptomes in sweetpotato and its putative ancestor I. trifida. In total, we obtained 53,861/51,184 high-quality transcripts, which includes 34,963/33,637 putative full-length cDNA sequences, from sweetpotato/I. trifida. Amongst, we identified 104,540/94,174 open reading frames, 1476/1475 transcription factors, 25,315/27,090 simple sequence repeats, 417/531 long non-coding RNAs out of the sweetpotato/I. trifida dataset. By utilizing public available genomic contigs, we analyzed the gene features (including exon number, exon size, intron number, intron size, exon-intron structure) of 33,119 and 32,793 full-length transcripts in sweetpotato and I. trifida, respectively. Furthermore, comparative analysis between our transcript datasets and other large-scale cDNA datasets from different plant species enables us assessing the quality of public datasets, estimating the genetic similarity across relative species, and surveyed the evolutionary pattern of genes. Overall, our study provided fundamental resources of large-scale full-length transcripts in sweetpotato and its putative ancestor, for the first time, and would facilitate structural, functional and comparative genomics studies in this important crop.


September 22, 2019  |  

Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken.

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development.Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.


September 22, 2019  |  

Novel molecules lncRNAs, tRFs and circRNAs deciphered from next-generation sequencing/RNA sequencing: computational databases and tools.

Powerful next-generation sequencing (NGS) technologies, more specifically RNA sequencing (RNA-seq), have been pivotal toward the detection and analysis and hypotheses generation of novel biomolecules, long noncoding RNAs (lncRNAs), tRNA-derived fragments (tRFs) and circular RNAs (circRNAs). Experimental validation of the occurrence of these biomolecules inside the cell has been reported. Their differential expression and functionally important role in several cancers types as well as other diseases such as Alzheimer’s and cardiovascular diseases have garnered interest toward further studies in this research arena. In this review, starting from a brief relevant introduction to NGS and RNA-seq and the expression and role of lncRNAs, tRFs and circRNAs in cancer, we have comprehensively analyzed the current landscape of databases developed and computational software used for analyses and visualization for this emerging and highly interesting field of these novel biomolecules. Our review will help the end users and research investigators gain information on the existing databases and tools as well as an understanding of the specific features which these offer. This will be useful for the researchers in their proper usage thereby guiding them toward novel hypotheses generation and saving time and costs involved in extensive experimental processes in these three different novel functional RNAs.© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.


September 22, 2019  |  

A survey of the sorghum transcriptome using single-molecule long reads.

Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ~11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.


September 22, 2019  |  

Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma.

Gene profiling of diffuse large B cell lymphoma (DLBCL) has revealed broad gene expression deregulation compared to normal B cells. While many studies have interrogated well known and annotated genes in DLBCL, none have yet performed a systematic analysis to uncover novel unannotated long non-coding RNAs (lncRNA) in DLBCL. In this study we sought to uncover these lncRNAs by examining RNA-seq data from primary DLBCL tumors and performed supporting analysis to identify potential role of these lncRNAs in DLBCL.We performed a systematic analysis of novel lncRNAs from the poly-adenylated transcriptome of 116 primary DLBCL samples. RNA-seq data were processed using de novo transcript assembly pipeline to discover novel lncRNAs in DLBCL. Systematic functional, mutational, cross-species, and co-expression analyses using numerous bioinformatics tools and statistical analysis were performed to characterize these novel lncRNAs.We identified 2,632 novel, multi-exonic lncRNAs expressed in more than one tumor, two-thirds of which are not expressed in normal B cells. Long read single molecule sequencing supports the splicing structure of many of these lncRNAs. More than one-third of novel lncRNAs are differentially expressed between the two major DLBCL subtypes, ABC and GCB. Novel lncRNAs are enriched at DLBCL super-enhancers, with a fraction of them conserved between human and dog lymphomas. We see transposable elements (TE) overlap in the exonic regions; particularly significant in the last exon of the novel lncRNAs suggest potential usage of cryptic TE polyadenylation signals. We identified highly co-expressed protein coding genes for at least 88 % of the novel lncRNAs. Functional enrichment analysis of co-expressed genes predicts a potential function for about half of novel lncRNAs. Finally, systematic structural analysis of candidate point mutations (SNVs) suggests that such mutations frequently stabilize lncRNA structures instead of destabilizing them.Discovery of these 2,632 novel lncRNAs in DLBCL significantly expands the lymphoma transcriptome and our analysis identifies potential roles of these lncRNAs in lymphomagenesis and/or tumor maintenance. For further studies, these novel lncRNAs also provide an abundant source of new targets for antisense oligonucleotide pharmacology, including shared targets between human and dog lymphomas.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.