September 22, 2019  |  

Extensive alternative splicing of KIR transcripts.

The killer-cell Ig-like receptors (KIR) form a multigene entity involved in modulating immune responses through interactions with MHC class I molecules. The complexity of the KIR cluster is reflected by, for instance, abundant levels of allelic polymorphism, gene copy number variation, and stochastic expression profiles. The current transcriptome study involving human and macaque families demonstrates that KIR family members are also subjected to differential levels of alternative splicing, and this seems to be gene dependent. Alternative splicing may result in the partial or complete skipping of exons, or the partial inclusion of introns, as documented at the transcription level. This post-transcriptional process can generate multiple isoforms from a single KIR gene, which diversifies the characteristics of the encoded proteins. For example, alternative splicing could modify ligand interactions, cellular localization, signaling properties, and the number of extracellular domains of the receptor. In humans, we observed abundant splicing for KIR2DL4, and to a lesser extent in the lineage III KIR genes. All experimentally documented splice events are substantiated by in silico splicing strength predictions. To a similar extent, alternative splicing is observed in rhesus macaques, a species that shares a close evolutionary relationship with humans. Splicing profiles of Mamu-KIR1D and Mamu-KIR2DL04 displayed a great diversity, whereas Mamu-KIR3DL20 (lineage V) is consistently spliced to generate a homolog of human KIR2DL5 (lineage I). The latter case represents an example of convergent evolution. Although just a single KIR splice event is shared between humans and macaques, the splicing mechanisms are similar, and the predicted consequences are comparable. In conclusion, alternative splicing adds an additional layer of complexity to the KIR gene system in primates, and results in a wide structural and functional variety of KIR receptors and its isoforms, which may play a role in health and disease.


September 22, 2019  |  

MHC class I diversity of olive baboons (Papio anubis) unravelled by next-generation sequencing.

The olive baboon represents an important model system to study various aspects of human biology and health, including the origin and diversity of the major histocompatibility complex. After screening of a group of related animals for polymorphisms associated with a well-defined microsatellite marker, subsequent MHC class I typing of a selected population of 24 animals was performed on two distinct next-generation sequencing (NGS) platforms. A substantial number of 21 A and 80 B transcripts were discovered, about half of which had not been previously reported. Per animal, from one to four highly transcribed A alleles (majors) were observed, in addition to ones characterised by low transcripion levels (minors), such as members of the A*14 lineage. Furthermore, in one animal, up to 13 B alleles with differential transcription level profiles may be present. Based on segregation profiles, 16 Paan-AB haplotypes were defined. A haplotype encodes in general one or two major A and three to seven B transcripts, respectively. A further peculiarity is the presence of at least one copy of a B*02 lineage on nearly every haplotype, which indicates that B*02 represents a separate locus with probably a specialistic function. Haplotypes appear to be generated by recombination-like events, and the breakpoints map not only between the A and B regions but also within the B region itself. Therefore, the genetic makeup of the olive baboon MHC class I region appears to have been subject to a similar or even more complex expansion process than the one documented for macaque species.


September 22, 2019  |  

Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing.In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells.Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.


September 22, 2019  |  

Next generation sequencing technology: Advances and applications.

Impressive progress has been made in the field of Next Generation Sequencing (NGS). Through advancements in the fields of molecular biology and technical engineering, parallelization of the sequencing reaction has profoundly increased the total number of produced sequence reads per run. Current sequencing platforms allow for a previously unprecedented view into complex mixtures of RNA and DNA samples. NGS is currently evolving into a molecular microscope finding its way into virtually every fields of biomedical research. In this chapter we review the technical background of the different commercially available NGS platforms with respect to template generation and the sequencing reaction and take a small step towards what the upcoming NGS technologies will bring. We close with an overview of different implementations of NGS into biomedical research. This article is part of a Special Issue entitled: From Genome to Function. Copyright © 2014 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells.

Full-length RNA sequencing (RNA-Seq) has been applied to bulk tissue, cell lines and sorted cells to characterize transcriptomes, but applying this technology to single cells has proven to be difficult, with less than ten single-cell transcriptomes having been analyzed thus far. Although single splicing events have been described for =200 single cells with statistical confidence, full-length mRNA analyses for hundreds of cells have not been reported. Single-cell short-read 3′ sequencing enables the identification of cellular subtypes, but full-length mRNA isoforms for these cell types cannot be profiled. We developed a method that starts with bulk tissue and identifies single-cell types and their full-length RNA isoforms without fluorescence-activated cell sorting. Using single-cell isoform RNA-Seq (ScISOr-Seq), we identified RNA isoforms in neurons, astrocytes, microglia, and cell subtypes such as Purkinje and Granule cells, and cell-type-specific combination patterns of distant splice sites. We used ScISOr-Seq to improve genome annotation in mouse Gencode version 10 by determining the cell-type-specific expression of 18,173 known and 16,872 novel isoforms.


September 22, 2019  |  

Human and rhesus macaque KIR haplotypes defined by their transcriptomes.

The killer-cell Ig-like receptors (KIRs) play a central role in the immune recognition in infection, pregnancy, and transplantation through their interactions with MHC class I molecules. KIR genes display abundant copy number variation as well as high levels of polymorphism. As a result, it is challenging to characterize this structurally dynamic region. KIR haplotypes have been analyzed in different species using conventional characterization methods, such as Sanger sequencing and Roche/454 pyrosequencing. However, these methods are time-consuming and often failed to define complete haplotypes, or do not reach allele-level resolution. In addition, most analyses were performed on genomic DNA, and thus were lacking substantial information about transcription and its corresponding modifications. In this paper, we present a single-molecule real-time sequencing approach, using Pacific Biosciences Sequel platform to characterize the KIR transcriptomes in human and rhesus macaque (Macaca mulatta) families. This high-resolution approach allowed the identification of novel Mamu-KIR alleles, the extension of reported allele sequences, and the determination of human and macaque KIR haplotypes. In addition, multiple recombinant KIR genes were discovered, all located on contracted haplotypes, which were likely the result of chromosomal rearrangements. The relatively high number of contracted haplotypes discovered might be indicative of selection on small KIR repertoires and/or novel fusion gene products. This next-generation method provides an improved high-resolution characterization of the KIR cluster in humans and macaques, which eventually may aid in a better understanding and interpretation of KIR allele-associated diseases, as well as the immune response in transplantation and reproduction. Copyright © 2018 by The American Association of Immunologists, Inc.


September 22, 2019  |  

Tumor-specific mitochondrial DNA variants are rarely detected in cell-free DNA.

The use of blood-circulating cell-free DNA (cfDNA) as a “liquid biopsy” in oncology is being explored for its potential as a cancer biomarker. Mitochondria contain their own circular genomic entity (mitochondrial DNA, mtDNA), up to even thousands of copies per cell. The mutation rate of mtDNA is several orders of magnitude higher than that of the nuclear DNA. Tumor-specific variants have been identified in tumors along the entire mtDNA, and their number varies among and within tumors. The high mtDNA copy number per cell and the high mtDNA mutation rate make it worthwhile to explore the potential of tumor-specific cf-mtDNA variants as cancer marker in the blood of cancer patients. We used single-molecule real-time (SMRT) sequencing to profile the entire mtDNA of 19 tissue specimens (primary tumor and/or metastatic sites, and tumor-adjacent normal tissue) and 9 cfDNA samples, originating from 8 cancer patients (5 breast, 3 colon). For each patient, tumor-specific mtDNA variants were detected and traced in cfDNA by SMRT sequencing and/or digital PCR to explore their feasibility as cancer biomarker. As a reference, we measured other blood-circulating biomarkers for these patients, including driver mutations in nuclear-encoded cfDNA and cancer-antigen levels or circulating tumor cells. Four of the 24 (17%) tumor-specific mtDNA variants were detected in cfDNA, however at much lower allele frequencies compared to mutations in nuclear-encoded driver genes in the same samples. Also, extensive heterogeneity was observed among the heteroplasmic mtDNA variants present in an individual. We conclude that there is limited value in tracing tumor-specific mtDNA variants in blood-circulating cfDNA with the current methods available. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene clusters unique to the endophytic bacterium Kosakonia radicincitans.

The recent worldwide discovery of plant growth-promoting (PGP) Kosakonia radicincitans in a large variety of crop plants suggests that this species confers significant influence on plants, both in terms of yield increase and product quality improvement. We provide a comparative genome analysis which helps to unravel the genetic basis for K. radicincitans’ motility, competitiveness and plant growth-promoting capacities. We discovered that K. radicincitans carries multiple copies of complex gene clusters, among them two flagellar systems and three type VI secretion systems (T6SSs). We speculate that host invasion may be facilitated by different flagella, and bacterial competitor suppression by effector proteins ejected via T6SSs. We found a large plasmid in K. radicincitans DSM 16656T, the species type strain, that confers the potential to exploit plant-derived carbon sources. We propose that multiple copies of complex gene clusters in K. radicincitans are metabolically expensive but provide competitive advantage over other bacterial strains in nutrient-rich environments. The comparison of the DSM 16656T genome to genomes of other genera of enteric plant growth-promoting bacteria (PGPB) exhibits traits unique to DSM 16656T and K. radicincitans, respectively, and traits shared between genera. We used the output of the in silico analysis for predicting the purpose of genomic features unique to K. radicincitans and performed microarray, PhyloChip, and microscopical analyses to gain deeper insight into the interaction of DSM 16656T, plants and associated microbiota. The comparative genome analysis will facilitate the future search for promising candidates of PGPB for sustainable crop production.


September 22, 2019  |  

Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils.

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.


September 22, 2019  |  

Production of glycine-derived ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces

Soil-inhabiting streptomycetes are Natures medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatile compounds, and research into these molecules and their role in soil ecology is rapidly gaining momentum. Here we show that streptomycetes have the ability to kill bacteria over long distances via air-borne antibiosis. Our research shows that streptomycetes do so by producing surprisingly high amounts of the low-cost volatile antimicrobial ammonia, which travels over long distances and antagonises both Gram-positive and Gram-negative bacteria. Glycine is required as precursor to produce ammonia, and inactivation of the glycine cleavage system annihilated air-borne antibiosis. As a resistance strategy, E. coli cells acquired mutations resulting in reduced expression of the porin master regulator OmpR and its cognate kinase EnvZ, which was just enough to allow them to survive. We further show that ammonia enhances the activity of the more costly canonical antibiotics, suggesting that streptomycetes adopt a low-cost strategy to sensitize competitors for antibiosis over longer distances.


September 22, 2019  |  

Whole-genome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes.

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ˜6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


September 22, 2019  |  

Diagnostic and Therapeutic Strategies for Fluoropyrimidine Treatment of Patients Carrying Multiple DPYD Variants.

DPYD genotyping prior to fluoropyrimidine treatment is increasingly implemented in clinical care. Without phasing information (i.e., allelic location of variants), current genotype-based dosing guidelines cannot be applied to patients carrying multiple DPYD variants. The primary aim of this study is to examine diagnostic and therapeutic strategies for fluoropyrimidine treatment of patients carrying multiple DPYD variants. A case series of patients carrying multiple DPYD variants is presented. Different genotyping techniques were used to determine phasing information. Phenotyping was performed by dihydropyrimidine dehydrogenase (DPD) enzyme activity measurements. Publicly available databases were queried to explore the frequency and phasing of variants of patients carrying multiple DPYD variants. Four out of seven patients carrying multiple DPYD variants received a full dose of fluoropyrimidines and experienced severe toxicity. Phasing information could be retrieved for four patients. In three patients, variants were located on two different alleles, i.e., in trans. Recommended dose reductions based on the phased genotype differed from the phenotype-derived dose reductions in three out of four cases. Data from publicly available databases show that the frequency of patients carrying multiple DPYD variants is low (< 0.2%), but higher than the frequency of the commonly tested DPYD*13 variant (0.1%). Patients carrying multiple DPYD variants are at high risk of developing severe toxicity. Additional analyses are required to determine the correct dose of fluoropyrimidine treatment. In patients carrying multiple DPYD variants, we recommend that a DPD phenotyping assay be carried out to determine a safe starting dose.


September 22, 2019  |  

Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes.

The cell wall is a shape-defining structure that envelopes almost all bacteria and protects them from environmental stresses. Bacteria can be forced to grow without a cell wall under certain conditions that interfere with cell wall synthesis, but the relevance of these wall-less cells (known as L-forms) is unclear. Here, we show that several species of filamentous actinomycetes have a natural ability to generate wall-deficient cells in response to hyperosmotic stress, which we call S-cells. This wall-deficient state is transient, as S-cells are able to switch to the normal mycelial mode of growth. However, prolonged exposure of S-cells to hyperosmotic stress yields variants that are able to proliferate indefinitely without their cell wall, similarly to L-forms. We propose that formation of wall-deficient cells in actinomycetes may serve as an adaptation to osmotic stress.


July 19, 2019  |  

The complete genome sequence of the murine pathobiont Helicobacter typhlonius.

Immuno-compromised mice infected with Helicobacter typhlonius are used to model microbially inducted inflammatory bowel disease (IBD). The specific mechanism through which H. typhlonius induces and promotes IBD is not fully understood. Access to the genome sequence is essential to examine emergent properties of this organism, such as its pathogenicity. To this end, we present the complete genome sequence of H. typhlonius MIT 97-6810, obtained through single-molecule real-time sequencing.The genome was assembled into a single circularized contig measuring 1.92 Mbp with an average GC content of 38.8%. In total 2,117 protein-encoding genes and 43 RNA genes were identified. Numerous pathogenic features were found, including a putative pathogenicity island (PAIs) containing components of type IV secretion system, virulence-associated proteins and cag PAI protein. We compared the genome of H. typhlonius to those of the murine pathobiont H. hepaticus and human pathobiont H. pylori. H. typhlonius resembles H. hepaticus most with 1,594 (75.3%) of its genes being orthologous to genes in H. hepaticus. Determination of the global methylation state revealed eight distinct recognition motifs for adenine and cytosine methylation. H. typhlonius shares four of its recognition motifs with H. pylori.The complete genome sequence of H. typhlonius MIT 97-6810 enabled us to identify many pathogenic features suggesting that H. typhlonius can act as a pathogen. Follow-up studies are necessary to evaluate the true nature of its pathogenic capabilities. We found many methylated sites and a plethora of restriction-modification systems. The genome, together with the methylome, will provide an essential resource for future studies investigating gene regulation, host interaction and pathogenicity of H. typhlonius. In turn, this work can contribute to unraveling the role of Helicobacter in enteric disease.


July 19, 2019  |  

ARTISAN PCR: rapid identification of full-length immunoglobulin rearrangements without primer binding bias.

B cells recognize specific antigens by their membrane-bound B-cell receptor (BCR). Functional BCR genes are assembled in pre-B cells by recombination of the variable (V), diversity (D) and joining (J) genes [V(D)J recombination]. When B cells participate in germinal centre reactions, non-templated point mutations are introduced into BCR genes by somatic hypermutation (SHM) (Rajewsky, 1996). V(D)J recombination and SHM create virtually unlimited BCR repertoires.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.