fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing.

A genetic diagnosis of autosomal-dominant polycystic kidney disease (ADPKD) is challenging due to allelic heterogeneity, high GC content, and homology of the PKD1 gene with six pseudogenes. Short-read next-generation sequencing approaches, such as whole-genome sequencing and whole-exome sequencing, often fail at reliably characterizing complex regions such as PKD1. However, long-read single-molecule sequencing has been shown to be an alternative strategy that could overcome PKD1 complexities and discriminate between homologous regions of PKD1 and its pseudogenes. In this study, we present the increased power of resolution for complex regions using long-read sequencing to characterize a cohort of 19 patients with ADPKD.…

Read More »

Friday, July 19, 2019

Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response.

Patients with leukemia who receive a T cell-depleted allogeneic stem cell graft followed by postponed donor lymphocyte infusion (DLI) can experience graft-versus-leukemia (GVL) reactivity, with a lower risk of graft-versus-host disease (GVHD). Here, we have investigated the magnitude, diversity, and specificity of alloreactive CD8 T cells in patients who developed GVL reactivity after DLI in the absence or presence of GVHD. We observed a lower magnitude and diversity of CD8 T cells for minor histocompatibility antigens (MiHAs) in patients with selective GVL reactivity without GVHD. Furthermore, we demonstrated that MiHA-specific T cell clones from patients with selective GVL reactivity showed…

Read More »

Friday, July 19, 2019

Quasispecies composition and evolution of a typical Zika virus clinical isolate from Suriname.

The arthropod-borne Zika virus (ZIKV) is currently causing a major international public health threat in the Americas. This study describes the isolation of ZIKV from the plasma of a 29-year-old female traveler that developed typical symptoms, like rash, fever and headache upon return from Suriname. The complete genome sequence including the 5′ and 3′ untranslated regions was determined and phylogenetic analysis showed the isolate clustering within the Asian lineage, close to other viruses that have recently been isolated in the Americas. In addition, the viral quasispecies composition was analyzed by single molecule real time sequencing, which suggested a mutation frequency…

Read More »

Friday, July 19, 2019

Exonization of an intronic LINE-1 element causing Becker muscular dystrophy as a novel mutational mechanism in dystrophin gene.

A broad mutational spectrum in the dystrophin (DMD) gene, from large deletions/duplications to point mutations, causes Duchenne/Becker muscular dystrophy (D/BMD). Comprehensive genotyping is particularly relevant considering the mutation-centered therapies for dystrophinopathies. We report the genetic characterization of a patient with disease onset at age 13 years, elevated creatine kinase levels and reduced dystrophin labeling, where multiplex-ligation probe amplification (MLPA) and genomic sequencing failed to detect pathogenic variants. Bioinformatic, transcriptomic (real time PCR, RT-PCR), and genomic approaches (Southern blot, long-range PCR, and single molecule real-time sequencing) were used to characterize the mutation. An aberrant transcript was identified, containing a 103-nucleotide insertion…

Read More »

Friday, July 19, 2019

Sensitive detection of mitochondrial DNA variants for analysis of mitochondrial DNA-enriched extracts from frozen tumor tissue.

Large variation exists in mitochondrial DNA (mtDNA) not only between but also within individuals. Also in human cancer, tumor-specific mtDNA variation exists. In this work, we describe the comparison of four methods to extract mtDNA as pure as possible from frozen tumor tissue. Also, three state-of-the-art methods for sensitive detection of mtDNA variants were evaluated. The main aim was to develop a procedure to detect low-frequent single-nucleotide mtDNA-specific variants in frozen tumor tissue. We show that of the methods evaluated, DNA extracted from cytosol fractions following exonuclease treatment results in highest mtDNA yield and purity from frozen tumor tissue (270-fold…

Read More »

Friday, July 19, 2019

Resolving the complete genome of Kuenenia stuttgartiensis from a membrane bioreactor enrichment using Single-Molecule Real-Time sequencing.

Anaerobic ammonium-oxidizing (anammox) bacteria are a group of strictly anaerobic chemolithoautotrophic microorganisms. They are capable of oxidizing ammonium to nitrogen gas using nitrite as a terminal electron acceptor, thereby facilitating the release of fixed nitrogen into the atmosphere. The anammox process is thought to exert a profound impact on the global nitrogen cycle and has been harnessed as an environment-friendly method for nitrogen removal from wastewater. In this study, we present the first closed genome sequence of an anammox bacterium, Kuenenia stuttgartiensis MBR1. It was obtained through Single-Molecule Real-Time (SMRT) sequencing of an enrichment culture constituting a mixture of at…

Read More »

Friday, July 19, 2019

Loss of maternal EED results in postnatal overgrowth.

Investigating how epigenetic information is transmitted through the mammalian germline is the key to understanding how this information impacts on health and disease susceptibility in offspring. EED is essential for regulating the repressive histone modification, histone 3 lysine 27 tri-methylation (H3K27me3) at many developmental genes.In this study, we used oocyte-specific Zp3-Cre recombinase (Zp3Cre) to delete Eed specifically in mouse growing oocytes, permitting the study of EED function in oocytes and the impact of depleting EED in oocytes on outcomes in offspring. As EED deletion occurred only in growing oocytes and females were mated to normal wild type males, this model…

Read More »

Sunday, July 7, 2019

Complete genome sequence of the Clostridium difficile laboratory strain 630¿ erm reveals differences from strain 630, including translocation of the mobile element CTn 5.

Background Clostridium difficile strain 630¿erm is a spontaneous erythromycin sensitive derivative of the reference strain 630 obtained by serial passaging in antibiotic-free media. It is widely used as a defined and tractable C. difficile strain. Though largely similar to the ancestral strain, it demonstrates phenotypic differences that might be the result of underlying genetic changes. Here, we performed a de novo assembly based on single-molecule real-time sequencing and an analysis of major methylation patterns.ResultsIn addition to single nucleotide polymorphisms and various indels, we found that the mobile element CTn5 is present in the gene encoding the methyltransferase rumA rather than…

Read More »

Sunday, July 7, 2019

Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916.

Bacillus subtilis strains BS49 and BS34A, both derived from a common ancestor, carry one or more copies of Tn916, an extremely common mobile genetic element capable of transfer to and from a broad range of microorganisms. Here, we report the complete genome sequence of BS49 and the draft genome sequence of BS34A, which have repeatedly been used as donors to transfer Tn916, Tn916 derivatives or oriTTn916-containing plasmids to clinically important pathogens. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Read More »

Sunday, July 7, 2019

Complete genome sequence of solvent-tolerant Pseudomonas putida S12 including megaplasmid pTTS12.

Pseudomonas putida S12 is a solvent-tolerant gamma-proteobacterium with an extensive track record for production of industrially relevant chemicals. Here we report the annotated complete genome sequence of this organism, including the megaplasmid pTTS12 which encodes many of the unique features of the S12 strain. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

An integrated map of structural variation in 2,504 human genomes.

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for…

Read More »

Sunday, July 7, 2019

Metabolomics-driven discovery of a prenylated isatin antibiotic produced by Streptomyces species MBT28.

Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with…

Read More »

Sunday, July 7, 2019

Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the…

Read More »

Sunday, July 7, 2019

The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV.

Aerobic methanotrophs can grow in hostile volcanic environments and use methane as their sole source of energy. The discovery of three verrucomicrobial Methylacidiphilum strains has revealed diverse metabolic pathways used by these methanotrophs, including mechanisms through which methane is oxidized. The basis of a complete understanding of these processes and of how these bacteria evolved and are able to thrive in such extreme environments partially resides in the complete characterization of their genome and its architecture.In this study, we present the complete genome sequence of Methylacidiphilum fumariolicum SolV, obtained using Pacific Biosciences single-molecule real-time (SMRT) sequencing technology. The genome assembles…

Read More »

Sunday, July 7, 2019

Genome sequence of the filamentous actinomycete Kitasatospora viridifaciens.

The vast majority of antibiotics are produced by filamentous soil bacteria called actinomycetes. We report here the genome sequence of the tetracycline producer “Streptomyces viridifaciens” DSM 40239. Given that this species has the hallmark signatures characteristic of the Kitasatospora genus, we previously proposed to rename this organism Kitasatospora viridifaciens. Copyright © 2017 Ramijan et al.

Read More »

1 2 3

Subscribe for blog updates:

Archives