X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 27, 2020

Immunology Brochure: Invaluable insights into immunology

In order to understand the molecular mechanisms governing the outcomes of disease, health and survival, immunologists have to characterize exceptionally complex genomic regions, like major histocompatibility complex (MHC), killer cell immune receptors (KIR), and the B and T-cell immune repertoire. Single Molecule, Real-Time (SMRT) Sequencing delivers the long read lengths, uniform coverage and high accuracy necessary to comprehensively and confidently resolve these immune sub-genomic regions. The granularity of data generated by PacBio® reads provides new access to imputation-free characterization of genes and haplotypes for invaluable genomic insights to advance disease association and evolutionary research.

Read More »

Thursday, August 27, 2020

Case Study: SMRT sequencing brings clarity to HIV vaccine and transplant research at the Wisconsin national primate research center

The Wisconsin National Primate Research Center (WNPRC) is a leading Major Histocompatibility Complex (MHC) typing lab that focuses on monkeys. While many scientists are familiar with the importance of characterizing the histocompatibility region of the human genome for applications like disease research or tissue typing before organ transplantation, fewer are aware of the need to accurately type this region in non-human primates. At the primate research lab, part of the University of Wisconsin- Madison, scientists are analyzing immune regions to help test potential HIV vaccines and AIDS therapies. Their work is essential for understanding the effects of treatment ahead of…

Read More »

Wednesday, May 13, 2020

PacBio Workshop: Understanding the biology of genomes with HiFi sequencing

The utility of new highly accurate long reads, or HiFi reads, was first demonstrated for calling all variant types in human genomes. It has since been shown that HiFi reads can be used to generate contiguous, complete, and accurate human genomes, even in repeat structures such as centromeres and telomeres. In this virtual workshop scientists from PacBio as well as Tina Graves-Lindsay from the McDonnell Genome Institute at Washington University share the many improvements we’ve made to HiFi sequencing in the past year, tools that take advantage of HiFi data for variant detection and assembly, and examples in numerous genomics…

Read More »

Tuesday, April 21, 2020

A Highly Unusual V1 Region of Env in an Elite Controller of HIV Infection.

HIV elite controllers represent a remarkable minority of patients who maintain normal CD4+ T-cell counts and low or undetectable viral loads for decades in the absence of antiretroviral therapy. To examine the possible contribution of virus attenuation to elite control, we obtained a primary HIV-1 isolate from an elite controller who had been infected for 19?years, the last 10 of which were in the absence of antiretroviral therapy. Full-length sequencing of this isolate revealed a highly unusual V1 domain in Envelope (Env). The V1 domain in this HIV-1 strain was 49 amino acids, placing it in the top 1% of…

Read More »

Tuesday, April 21, 2020

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that…

Read More »

Tuesday, April 21, 2020

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright…

Read More »

Tuesday, April 21, 2020

Construction of full-length Japanese reference panel of class I HLA genes with single-molecule, real-time sequencing.

Human leukocyte antigen (HLA) is a gene complex known for its exceptional diversity across populations, importance in organ and blood stem cell transplantation, and associations of specific alleles with various diseases. We constructed a Japanese reference panel of class I HLA genes (ToMMo HLA panel), comprising a distinct set of HLA-A, HLA-B, HLA-C, and HLA-H alleles, by single-molecule, real-time (SMRT) sequencing of 208 individuals included in the 1070 whole-genome Japanese reference panel (1KJPN). For high-quality allele reconstruction, we developed a novel pipeline, Primer-Separation Assembly and Refinement Pipeline (PSARP), in which the SMRT sequencing and additional short-read data were used. The…

Read More »

Tuesday, April 21, 2020

Report from the Eleventh Killer Immunoglobulin-like Receptor (KIR) Workshop: Novel insights on KIR polymorphism, ligand recognition, expression and function.

The Eleventh Killer Immunoglobulin-like Receptor (KIR) Workshop was held in Camogli (Genoa, Italy) in October 2018. This congress brought together 113 participants working on KIR field. Fifty-eight studies have been presented, the majority of which included unpublished data. Thus, KIR workshop, allowing the meeting of people sharing their knowledge and experience in a friendly atmosphere, still represents a special event of fruitful discussion and exchange of novel breakthrough, results, and ideas. In this report, we summarize all the scientific contributions highlighting the most recent advances in KIR field. Forty abstracts presented at the KIR Workshop are published in this issue.…

Read More »

Tuesday, April 21, 2020

Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps.

Metagenomic sequence classification should be fast, accurate and information-rich. Emerging long-read sequencing technologies promise to improve the balance between these factors but most existing methods were designed for short reads. MetaMaps is a new method, specifically developed for long reads, capable of mapping a long-read metagenome to a comprehensive RefSeq database with >12,000 genomes in 94% accuracy for species-level read assignment and r2?>?0.97 for the estimation of sample composition on both simulated and real data when the sample genomes or close relatives are present in the classification database. To address novel species and genera, which are comparatively harder to predict,…

Read More »

Monday, March 30, 2020

ASHI PacBio Workshop: KIR haplotypes – The long and short of it

KIR haplotypes can be determined by physical and computational and statistical methods. Martin Maiers from National Bone Marrow Donor Program (NMDP) presents a summary of their work to determine KIR genomic content for use in clinical transplantation, outcomes of HLA sequencing of KIR region across a variety of methods and shares their data from recent experiments using PacBio single-molecule sequencing of fosmid libraries.

Read More »

Monday, March 30, 2020

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo), Daniel Geraghty (Fred Hutchinson Cancer Center), and Mike Schatz (CSHL)

Read More »

Monday, March 30, 2020

AGBT Virtual Poster: Insight into MHC and KIR genomic regions associated with autoimmune disease

Dan Geraghty from the Fred Hutchinson Cancer Research Center presents his AGBT poster on a new PacBio-based solution to sequence extended genomic regions — in this case, KIR and MHC, two of the most variable regions of the human genome. He reports data revealing for the first time regions that may be associated with autoimmune diseases such as diabetes, rheumatoid arthritis, and multiple sclerosis, and also shows that sequences were phased, complete, and highly accurate.

Read More »

1 2 3

Subscribe for blog updates:

Archives