April 21, 2020  |  

Comparative Genomic Analysis of Virulence, Antimicrobial Resistance, and Plasmid Profiles of Salmonella Dublin Isolated from Sick Cattle, Retail Beef, and Humans in the United States.

Salmonella enterica serovar Dublin is a host-adapted serotype associated with typhoidal disease in cattle. While rare in humans, it usually causes severe illness, including bacteremia. In the United States, Salmonella Dublin has become one of the most multidrug-resistant (MDR) serotypes. To understand the genetic elements that are associated with virulence and resistance, we sequenced 61 isolates of Salmonella Dublin (49 from sick cattle and 12 from retail beef) using the Illumina MiSeq and closed 5 genomes using the PacBio sequencing platform. Genomic data of eight human isolates were also downloaded from NCBI (National Center for Biotechnology Information) for comparative analysis. Fifteen Salmonella pathogenicity islands (SPIs) and a spv operon (spvRABCD), which encodes important virulence factors, were identified in all 69 (100%) isolates. The 15 SPIs were located on the chromosome of the 5 closed genomes, with each of these isolates also carrying 1 or 2 plasmids with sizes between 36 and 329?kb. Multiple antimicrobial resistance genes (ARGs), including blaCMY-2, blaTEM-1B, aadA12, aph(3′)-Ia, aph(3′)-Ic, strA, strB, floR, sul1, sul2, and tet(A), along with spv operons were identified on these plasmids. Comprehensive antimicrobial resistance genotypes were determined, including 17 genes encoding resistance to 5 different classes of antimicrobials, and mutations in the housekeeping gene (gyrA) associated with resistance or decreased susceptibility to fluoroquinolones. Together these data revealed that this panel of Salmonella Dublin commonly carried 15 SPIs, MDR/virulence plasmids, and ARGs against several classes of antimicrobials. Such genomic elements may make important contributions to the severity of disease and treatment failures in Salmonella Dublin infections in both humans and cattle.


April 21, 2020  |  

Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli.

Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E.?coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.


April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


April 21, 2020  |  

Large Fragment Deletions Induced by Cas9 Cleavage While Not in BEs System in Rabbit

CRISPR-Cas9 and BEs system are poised to become the gene editing tool of choice in clinical contexts, however large fragment deletion was found in Cas9-mediated mutation cells without animal level validation. By analyzing 16 gene-edited rabbit lines (including 112 rabbits) generated using SpCas9, BEs, xCas9 and xCas9-BEs with long-range PCR genotyping and long-read sequencing by PacBio platform, we show that extending thousands of bases fragment deletions in single-guide RNA/Cas9 and xCas9 system mutation rabbit, but few large deletions were found in BEs-induced mutation rabbits. We firstly validated that no large fragment deletion induced by BEs system at animal level, suggesting that BE systems can be beneficial tools for the further development of highly accurate and secure gene therapy for the clinical treatment of human genetic disorders


April 21, 2020  |  

Comparison of mitochondrial DNA variants detection using short- and long-read sequencing.

The recent advent of long-read sequencing technologies is expected to provide reasonable answers to genetic challenges unresolvable by short-read sequencing, primarily the inability to accurately study structural variations, copy number variations, and homologous repeats in complex parts of the genome. However, long-read sequencing comes along with higher rates of random short deletions and insertions, and single nucleotide errors. The relatively higher sequencing accuracy of short-read sequencing has kept it as the first choice of screening for single nucleotide variants and short deletions and insertions. Albeit, short-read sequencing still suffers from systematic errors that tend to occur at specific positions where a high depth of reads is not always capable to correct for these errors. In this study, we compared the genotyping of mitochondrial DNA variants in three samples using PacBio’s Sequel (Pacific Biosciences Inc., Menlo Park, CA, USA) long-read sequencing and illumina’s HiSeqX10 (illumine Inc., San Diego, CA, USA) short-read sequencing data. We concluded that, despite the differences in the type and frequency of errors in the long-reads sequencing, its accuracy is still comparable to that of short-reads for genotyping short nuclear variants; due to the randomness of errors in long reads, a lower coverage, around 37 reads, can be sufficient to correct for these random errors.


April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.


April 21, 2020  |  

Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline

Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and allow for annotation of TEs. There are numerous methods for each class of elements with unknown relative performance metrics. We benchmarked existing programs based on a curated library of rice TEs. Using the most robust programs, we created a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a condensed TE library for annotations of structurally intact and fragmented elements. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.List of abbreviationsTETransposable ElementsLTRLong Terminal RepeatLINELong Interspersed Nuclear ElementSINEShort Interspersed Nuclear ElementMITEMiniature Inverted Transposable ElementTIRTerminal Inverted RepeatTSDTarget Site DuplicationTPTrue PositivesFPFalse PositivesTNTrue NegativeFNFalse NegativesGRFGeneric Repeat FinderEDTAExtensive de-novo TE Annotator


April 21, 2020  |  

Genomic analysis of Marinobacter sp. NP-4 and NP-6 isolated from the deep-sea oceanic crust on the western flank of the Mid-Atlantic Ridge

Two Marinobacter sp. NP-4 and NP-6 were isolated from a deep oceanic basaltic crust at North Pond, located at the western flank of the Mid-Atlantic Ridge. These two strains are capable of using multiple carbon sources such as acetate, succinate, glucose and sucrose while take oxygen as a primary electron acceptor. The strain NP-4 is also able to grow anaerobically under 20?MPa, with nitrate as the electron acceptor, thus represents a piezotolerant. To explore the metabolic potentials of Marinobacter sp. NP-4 and NP-6, the complete genome of NP-4 and close-to-complete genome of NP-6 were sequenced. The genome of NP-4 contains one chromosome and two plasmids with the size of 4.6?Mb in total, and with average GC content of 57.0%. The genome of NP-6 is 4.5?Mb and consists of 6 scaffolds, with an average GC content of 57.1%. Complete glycolysis, citrate cycle and aromatics compounds degradation pathways are identified in genomes of these two strains, suggesting that they possess a heterotrophic life style. Additionally, one plasmid of NP-4 contains genes for alkane degradation, phosphonate ABC transporter and cation efflux system, enabling NP-4 extra surviving abilities. In total, genomic information of these two strains provide insights into the physiological features and adaptation strategies of Marinobacter spp. in the deep oceanic crust biosphere.


April 21, 2020  |  

Variant Phasing and Haplotypic Expression from Single-molecule Long-read Sequencing in Maize

Haplotype phasing of genetic variants is important for interpretation of the maize genome, population genetic analysis, and functional genomic analysis of allelic activity. Accordingly, accurate methods for phasing full-length isoforms are essential for functional genomics study. In this study, we performed an isoform-level phasing study in maize, using two inbred lines and their reciprocal crosses, based on single-molecule full-length cDNA sequencing. To phase and analyze full-length transcripts between hybrids and parents, we developed a tool called IsoPhase. Using this tool, we validated the majority of SNPs called against matching short read data and identified cases of allele-specific, gene-level, and isoform-level expression. Our results revealed that maize parental and hybrid lines exhibit different splicing activities. After phasing 6,847 genes in two reciprocal hybrids using embryo, endosperm and root tissues, we annotated the SNPs and identified large-effect genes. In addition, based on single-molecule sequencing, we identified parent-of-origin isoforms in maize hybrids, different novel isoforms between maize parent and hybrid lines, and imprinted genes from different tissues. Finally, we characterized variation in cis- and trans-regulatory effects. Our study provides measures of haplotypic expression that could increase power and accuracy in studies of allelic expression.


April 21, 2020  |  

Genome analysis and Hi-C assisted assembly of Elaeagnus angustifolia L., a deciduous tree belonging to Elaeagnaceae

Elaeagnus angustifolia L. is a deciduous tree of the Elaeagnaceae family. It is widely used in the study of abiotic stress tolerance in plants and for the improvement of desertification-affected land due to its characteristics of drought resistance, salt tolerance, cold resistance, wind resistance, and other environmental adaptation. Here, we report the complete genome sequencing using the Pacific Biosciences (PacBio) platform and Hi-C assisted assembly of E. angustifolia. A total of 44.27 Gb raw PacBio sequel reads were obtained after filtering out low-quality data, with an average length of 8.64 Kb. Assembly using Canu gave an assembly length of 781.09 Mb, with a contig N50 of 486.92 Kb. A total of 39.56 Gb of clean reads was obtained, with a sequencing coverage of 75×, and Q30 ratio > 95.46%. The 510.71 Mb genomic sequence was mapped to the chromosome, accounting for 96.94% of the total length of the sequence, and the corresponding number of sequences was 269, accounting for 45.83% of the total number of sequences. The genome sequence study of E. angustifolia can be a valuable source for the comparative genome analysis of the Elaeagnaceae family members, and can help to understand the evolutionary response mechanisms of the Elaeagnaceae to drought, salt, cold and wind resistance, and thereby provide effective theoretical support for the improvement of desertification-affected land.


April 21, 2020  |  

Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.

The aim of this study was to detect the transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in E. faecalis and E. faecium of swine origin in Sichuan Province, China.A total of 158 enterococci strains (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterized by whole genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments.The transferable oxazolidinone resistance determinants, cfr, optrA and poxtA, were detected in zero, six, and one enterococci strains, respectively. The poxtA in one E. faecalis strain was located on a 37,990 bp plasmid, which co-harbored fexB, cat, tet(L) and tet(M), and could be conjugated to E. faecalis JH2-2. One E. faecalis strain harbored two different OptrA variants, including one variant with a single substitution, Q219H, which has not been reported previously. Two optrA-carrying plasmids, pC25-1, with a size of 45,581 bp, and pC54, with a size of 64,500 bp, shared a 40,494 bp identical region that contained genetic context IS1216E-fexA-optrA-erm(A)-IS1216E, which could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 that were inserted into the radC gene.Our study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA or poxtA.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based identification of eukaryotes. This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Extended haplotype phasing of de novo genome assemblies with FALCON-Phase

Haplotype-resolved genome assemblies are important for understanding how combinations of variants impact phenotypes. These assemblies can be created in various ways, such as use of tissues that contain single-haplotype (haploid) genomes, or by co-sequencing of parental genomes, but these approaches can be impractical in many situations. We present FALCON-Phase, which integrates long-read sequencing data and ultra-long-range Hi-C chromatin interaction data of a diploid individual to create high-quality, phased diploid genome assemblies. The method was evaluated by application to three datasets, including human, cattle, and zebra finch, for which high-quality, fully haplotype resolved assemblies were available for benchmarking. Phasing algorithm accuracy was affected by heterozygosity of the individual sequenced, with higher accuracy for cattle and zebra finch (>97%) compared to human (82%). In addition, scaffolding with the same Hi-C chromatin contact data resulted in phased chromosome-scale scaffolds.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.