Menu
September 22, 2019

Tracing genomic divergence of Vibrio bacteria in the Harveyi clade.

The mechanism of bacterial speciation remains a topic of tremendous interest. To understand the ecological and evolutionary mechanisms of speciation in Vibrio bacteria, we analyzed the genomic dissimilarities between three closely related species in the so-called Harveyi clade of the genus Vibrio, V. campbellii, V. jasicida, and V. hyugaensis The analysis focused on strains isolated from diverse geographic locations over a long period of time. The results of phylogenetic analyses and calculations of average nucleotide identity (ANI) supported the classification of V. jasicida and V. hyugaensis into two species. These analyses also identified two well-supported clades in V. campbellii; however, strains from both clades were classified as members of the same species. Comparative analyses of the complete genome sequences of representative strains from the three species identified higher syntenic coverage between genomes of V. jasicida and V. hyugaensis than that between the genomes from the two V. campbellii clades. The results from comparative analyses of gene content between bacteria from the three species did not support the hypothesis that gene gain and/or loss contributed to their speciation. We also did not find support for the hypothesis that ecological diversification toward associations with marine animals contributed to the speciation of V. jasicida and V. hyugaensis Overall, based on the results obtained in this study, we propose that speciation in Harveyi clade species is a result of stochastic diversification of local populations, which was influenced by multiple evolutionary processes, followed by extinction events.IMPORTANCE To investigate the mechanisms underlying speciation in the genus Vibrio, we provided a well-assembled reference of genomes and performed systematic genomic comparisons among three evolutionarily closely related species. We resolved taxonomic ambiguities and identified genomic features separating the three species. Based on the study results, we propose a hypothesis explaining how species in the Harveyi clade of Vibrio bacteria diversified. Copyright © 2018 American Society for Microbiology.


September 22, 2019

Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments.

Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms’ use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019

Transcriptome analysis of Neisseria gonorrhoeae during natural infection reveals differential expression of antibiotic resistance determinants between men and women.

Neisseria gonorrhoeae is a bacterial pathogen responsible for the sexually transmitted infection gonorrhea. Emergence of antimicrobial resistance (AMR) of N. gonorrhoeae worldwide has resulted in limited therapeutic choices for this infection. Men who seek treatment often have symptomatic urethritis; in contrast, gonococcal cervicitis in women is usually minimally symptomatic, but may progress to pelvic inflammatory disease. Previously, we reported the first analysis of gonococcal transcriptome expression determined in secretions from women with cervical infection. Here, we defined gonococcal global transcriptional responses in urethral specimens from men with symptomatic urethritis and compared these with transcriptional responses in specimens obtained from women with cervical infections and in vitro-grown N. gonorrhoeae isolates. This is the first comprehensive comparison of gonococcal gene expression in infected men and women. RNA sequencing analysis revealed that 9.4% of gonococcal genes showed increased expression exclusively in men and included genes involved in host immune cell interactions, while 4.3% showed increased expression exclusively in women and included phage-associated genes. Infected men and women displayed comparable antibiotic-resistant genotypes and in vitro phenotypes, but a 4-fold higher expression of the Mtr efflux pump-related genes was observed in men. These results suggest that expression of AMR genes is programed genotypically and also driven by sex-specific environments. Collectively, our results indicate that distinct N. gonorrhoeae gene expression signatures are detected during genital infection in men and women. We propose that therapeutic strategies could target sex-specific differences in expression of antibiotic resistance genes.IMPORTANCE Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae. Copyright © 2018 Nudel et al.


September 22, 2019

Biology and genome of a newly discovered sibling species of Caenorhabditis elegans.

A ‘sibling’ species of the model organism Caenorhabditis elegans has long been sought for use in comparative analyses that would enable deep evolutionary interpretations of biological phenomena. Here, we describe the first sibling species of C. elegans, C. inopinata n. sp., isolated from fig syconia in Okinawa, Japan. We investigate the morphology, developmental processes and behaviour of C. inopinata, which differ significantly from those of C. elegans. The 123-Mb C. inopinata genome was sequenced and assembled into six nuclear chromosomes, allowing delineation of Caenorhabditis genome evolution and revealing unique characteristics, such as highly expanded transposable elements that might have contributed to the genome evolution of C. inopinata. In addition, C. inopinata exhibits massive gene losses in chemoreceptor gene families, which could be correlated with its limited habitat area. We have developed genetic and molecular techniques for C. inopinata; thus C. inopinata provides an exciting new platform for comparative evolutionary studies.


September 22, 2019

Whole genome sequencing, de novo assembly and phenotypic profiling for the new budding yeast species Saccharomyces jurei.

Saccharomyces sensu stricto complex consist of yeast species, which are not only important in the fermentation industry but are also model systems for genomic and ecological analysis. Here, we present the complete genome assemblies of Saccharomyces jurei, a newly discovered Saccharomyces sensu stricto species from high altitude oaks. Phylogenetic and phenotypic analysis revealed that S. jurei is more closely related to S. mikatae, than S. cerevisiae, and S. paradoxus The karyotype of S. jurei presents two reciprocal chromosomal translocations between chromosome VI/VII and I/XIII when compared to the S. cerevisiae genome. Interestingly, while the rearrangement I/XIII is unique to S. jurei, the other is in common with S. mikatae strain IFO1815, suggesting shared evolutionary history of this species after the split between S. cerevisiae and S. mikatae The number of Ty elements differed in the new species, with a higher number of Ty elements present in S. jurei than in S. cerevisiae Phenotypically, the S. jurei strain NCYC 3962 has relatively higher fitness than the other strain NCYC 3947T under most of the environmental stress conditions tested and showed remarkably increased fitness in higher concentration of acetic acid compared to the other sensu stricto species. Both strains were found to be better adapted to lower temperatures compared to S. cerevisiae. Copyright © 2018 Naseeb et al.


September 22, 2019

Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3).

Rhodopseudomonas palustris strains PS3 and YSC3 are purple non-sulfur phototrophic bacteria isolated from Taiwanese paddy soils. PS3 has beneficial effects on plant growth and enhances the uptake efficiency of applied fertilizer nutrients. In contrast, YSC3 has no significant effect on plant growth. The genomic structures of PS3 and YSC3 are similar; each contains one circular chromosome that is 5,269,926 or 5,371,816?bp in size, with 4,799 or 4,907 protein-coding genes, respectively. In this study, a large class of genes involved in chemotaxis and motility was identified in both strains, and genes associated with plant growth promotion, such as nitrogen fixation-, IAA synthesis- and ACC deamination-associated genes, were also identified. We noticed that the growth rate, the amount of biofilm formation, and the relative expression levels of several chemotaxis-associated genes were significantly higher for PS3 than for YSC3 upon treatment with root exudates. These results indicate that PS3 responds better to the presence of plant hosts, which may contribute to the successful interactions of PS3 with plant hosts. Moreover, these findings indicate that the existence of gene clusters associated with plant growth promotion is required but not sufficient for a bacterium to exhibit phenotypes associated with plant growth promotion.


September 22, 2019

Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome.

Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome.Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region.Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.


September 22, 2019

Phenotypic and genomic properties of Brachybacterium vulturis sp. nov. and Brachybacterium avium sp. nov.

Two strains, VM2412T and VR2415T, were isolated from the feces of an Andean condor (Vultur gryphus) living in Seoul Grand Park, Gyeonggi-do, South Korea. Cells of both strains were observed to be Gram-stain positive, non-motile, aerobic, catalase positive and oxidase negative. Growth was found to occur at 10-30°C, showing optimum growth at 30°C. The strains could tolerate up to 15% (w/v) NaCl concentration and grow at pH 6-9. The strains shared 99.3% 16S rRNA gene sequence similarity to each other but were identified as two distinct species based on 89.0-89.2% ANIb, 90.3% ANIm, 89.7% OrthoANI and 38.0% dDDH values calculated using whole genome sequences. Among species with validly published names, Brachybacterium ginsengisoli DCY80T shared high 16S rRNA gene sequence similarities with strains VM2412T (98.7%) and VR2415T (98.4%) and close genetic relatedness with strains VM2412T (83.3-83.5% ANIb, 87.0% ANIm, 84.3% OrthoANI and 27.8% dDDH) and VR2415T (82.8-83.2% ANIb, 86.7% ANIm, 83.9% OrthoANI and 27.2% dDDH). The major fatty acid of the two strains was identified as anteiso-C15:0 and the polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, presumptively phosphatidylethanolamine and three unidentified glycolipids. Strain VR2415T also produced an unidentified phospholipid. The cell walls of the two strains contained meso-diaminopimelic acid as diagnostic diamino acid and the whole cell sugars were ribose, glucose, and galactose. The strains contained MK-7 as their predominant menaquinone. The genomes of strains VM2412T, VR2415T, and B. ginsengisoli DCY80T were sequenced in this study. The genomic G+C contents of strains VM2412T and VR2415T were determined to be 70.8 and 70.4 mol%, respectively. A genome-based phylogenetic tree constructed using an up-to-date bacterial core gene set (UBCG) showed that the strains formed a clade with members of the genus Brachybacterium, supporting their taxonomic classification into the genus Brachybacterium. Based on phenotypic and genotypic analyses in this study, strains VM2412T and VR2415T are considered to represent two novel species of the genus Brachybacterium and the names Brachybacterium vulturis sp. nov. and Brachybacterium avium sp. nov. are proposed for strains VM2412T (=KCTC 39996T = JCM 32142T) and VR2415T (=KCTC 39997T = JCM 32143T), respectively.


September 22, 2019

Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6T adapted to coastal planktonic lifestyle.

Pontimonas salivibrio strain CL-TW6T (=KCCM 90105?=?JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized.The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G?+?C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions.Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.


September 22, 2019

Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution.

Reprogramming of the NRPS/PKS assembly line is an attractive method for the production of new bioactive molecules. However, it is usually hampered by the loss of intimate domain/module interactions required for the precise control of chain transfer and elongation reactions. In this study, we first establish heterologous expression systems of the unique antimycin-type cyclic depsipeptides: JBIR-06 (tri-lactone) and neoantimycin (tetra-lactone), and engineer their biosyntheses by taking advantage of bioinformatic analyses and evolutionary insights. As a result, we successfully accomplish three manipulations: (i) ring contraction of neoantimycin (from tetra-lactone to tri-lactone), (ii) ring expansion of JBIR-06 (from tri-lactone to tetra-lactone), and (iii) alkyl chain diversification of JBIR-06 by the incorporation of various alkylmalonyl-CoA extender units, to generate a set of unnatural derivatives in practical yields. This study presents a useful strategy for engineering NRPS-PKS module enzymes, based on nature’s diversification of the domain and module organizations.


September 22, 2019

Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related Malian Xanthomonas oryzae pv. oryzae strains.

Rice bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae (Xoo) which injects Transcription Activator-Like Effectors (TALEs) into the host cell to modulate the expression of target disease susceptibility genes. Xoo major-virulence TALEs universally target susceptibility genes of the SWEET sugar transporter family. TALE-unresponsive alleles of OsSWEET genes have been identified in the rice germplasm or created by genome editing and confer resistance to BLB. In recent years, BLB has become one of the major biotic constraints to rice cultivation in Mali. To inform the deployment of alternative sources of resistance in this country, rice lines carrying alleles of OsSWEET14 unresponsive to either TalF (formerly Tal5) or TalC, two important TALEs previously identified in West African Xoo, were challenged with a panel of strains recently isolated in Mali and were found to remain susceptible to these isolates. The characterization of TALE repertoires revealed that talF and talC specific molecular markers were simultaneously present in all surveyed Malian strains, suggesting that the corresponding TALEs are broadly deployed by Malian Xoo to redundantly target the OsSWEET14 gene promoter. Consistent with this, the capacity of most Malian Xoo to induce OsSWEET14 was unaffected by either talC- or talF-unresponsive alleles of this gene. Long-read sequencing and assembly of eight Malian Xoo genomes confirmed the widespread occurrence of active TalF and TalC variants and provided a detailed insight into the diversity of TALE repertoires. All sequenced strains shared nine evolutionary related tal effector genes. Notably, a new TalF variant that is unable to induce OsSWEET14 was identified. Furthermore, two distinct TalB variants were shown to have lost the ability to simultaneously induce two susceptibility genes as previously reported for the founding members of this group from strains MAI1 and BAI3. Yet, both new TalB variants retained the ability to induce one or the other of the two susceptibility genes. These results reveal molecular and functional differences in tal repertoires and will be important for the sustainable deployment of broad-spectrum and durable resistance to BLB in West Africa.


September 22, 2019

Detection and characterization of a clinical Escherichia coli ST3204 strain coproducing NDM-16 and MCR-1.

A plasmid-mediated colistin resistance gene, mcr-1, has been reported worldwide and has caused concern regarding a major therapeutic challenge. Alarmingly, mcr-1 has spread into clinical carbapenem-resistant Enterobacteriaceae isolates, resulting in extensively drug-resistant and even pan drug-resistant isolates that can cause untreatable infections. In this study, we report isolation of an extensively drug-resistant Escherichia coli strain EC1188 that coproduces NDM-16 and MCR-1 from a urine sample taken from a patient with craniocerebral injury.E. coli strain EC1188 was identified and subjected to genotyping, susceptibility testing and conjugation experiments. The genetic locations of blaNDM-16 and mcr-1 were established with southern blot hybridization. The complete genome sequence of this strain was obtained and the genetic characteristics of the mcr-1- and blaNDM-16-harboring plasmids were analyzed. In addition, comparative genetic analyses of mcr-1 and blaNDM-16 with closely related plasmids were also carried out.Whole-genome sequencing revealed that strain EC1188 possess various resistance genes and virulence genes. S1-pulsed-field gel electrophoresis and southern blot suggested that the blaNDM-16 and mcr-1 genes were located on an ~65 kb plasmid and an ~80 kb plasmid, respectively. Moreover, the two genes could successfully transfer their resistance phenotype to E. coli strain C600. Sequence analysis showed that these two plasmids possessed high sequence similarity to previously reported blaNDM-5-harboring and mcr-1-harboring plasmids in China.To the best of our knowledge, this is the first report to isolate an E. coli strain that coproduces NDM-16 and MCR-1. In addition, we characterized the blaNDM-16-harboring plasmid for the first time. Our study further emphasizes that the co-occurrence of the two prevalent transferrable resistance plasmids in a single isolate is highly significant because infections caused by MCR-1-producing carbapenem-resistant Enterobacteriaceae isolates are increasing each year. It is imperative to perform active surveillance to prevent further dissemination of MCR-1-producing CRE isolates.


September 22, 2019

A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii

Listeria monocytogenes and Cronobacter sakazakii are notorious pathogens involved in numerous foodborne outbreaks after ingested contaminated food. Bacteriocins are natural food preservatives, some of which have antimicrobial activity comparable with antibiotics. In this study, a plasmid encoded novel bacteriocin BMP11 produced by Lactobacillus crustorum MN047 was innovatively identified by combining complete genome and LC-MS/MS. The BMP11 was found to have rich a-helix conformation after prediction. Moreover, the antimicrobial activity of BMP11 was verified after its heterologous expression in E. coli with 1280 and 640 AU/mL against L. monocytogenes and C. sakazakii, respectively. After purification by anion-exchange chromatography and HPLC, BMP11 had MIC values of 0.3–38.4?µg/mL against tested foodborne pathogens. Further, it was found that BMP11 had bactericidal action mode with concomitant cell lysis to pathogens by growth curve and time-kill kinetics. The results of scanning electron microscope (SEM) and transmission electron microscope (TEM) indicated that BMP11 destroyed the integrity of cell envelope of pathogens with cell wall perforation and cell membrane permeabilization. The destruction of cell envelope integrity was further verified by propidium iodide (PI) uptake and lactic dehydrogenase (LDH) release. BMP11 increased inner-membrane permeability of C. sakazakii in a concentration-dependent manner. Meanwhile, BMP11 exhibited antibiofilm formation activity. In addition, BMP11 inhibited the growth of L. monocytogenes in milk. Therefore, BMP11 had promising potential as antimicrobial to control foodborne pathogens in dairy products.


September 22, 2019

Complete genome sequence of Cd(II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation.

Microbe-assisted phytoremediation has great potential for practical applications. Plant growth-promoting bacteria (PGPB) with heavy metal (HM) resistance are important for the implementation of PGPB-assisted phytoremediation of HM-contaminated environments. Arthrobacter sp. PGP41 is a Cd(II)-resistant bacterium isolated from the rhizosphere soils of a Cd(II) hyperaccumulator plant, Solanum nigrum. Strain PGP41 can significantly improve plant seedling and root growth under Cd(II) stress conditions. This bacterium exhibited the ability to produce high levels of indole-3-acetic acid (IAA), as well as the ability to fix nitrogen and solubilize phosphate, and it possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Here, we present the complete genome sequence of strain PGP41. The genome consists of a single chromosome with a G+C content of 65.38% and no plasmids. The genome encodes 3898 genes and contains 49 tRNA and 12 rRNA genes. Multiple genes associated with plant growth promotion were identified in the genome. The whole genome sequence of PGP41 provides information useful for further clarifying the molecular mechanisms behind plant growth promotion by PGPB and facilitates its potential use as an inoculum in the bioremediation of HM-contaminated environments.


September 22, 2019

Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis.

Sequence type 58 (ST58) phylogroup B1 Escherichia coli have been isolated from a wide variety of mammalian and avian hosts but are not noted for their ability to cause serious disease in humans or animals. Here we determined the genome sequences of two multidrug-resistant E. coli ST58 strains from urine and blood of one patient using a combination of Illumina and Single Molecule, Real-Time (SMRT) sequencing. Both ST58 strains were clonal and were characterised as serotype O8:H25, phylogroup B1 and carried a complex resistance locus/loci (CRL) that featured an atypical class 1 integron with a dfrA5 (trimethoprim resistance) gene cassette followed by only 24 bp of the 3′-CS. CRL that carry this particular integron have been described previously in E. coli from cattle, pigs and humans in Australia. The integron abuts a copy of Tn6029, an IS26-flanked composite transposon encoding blaTEM, sul2 and strAB genes that confer resistance to ampicillin, sulfathiazole and streptomycin, respectively. The CRL resides within a novel Tn2610-like hybrid Tn1721/Tn21 transposon on an IncF, ColV plasmid (pSDJ2009-52F) of 138 553 bp that encodes virulence associated genes implicated in life-threatening extraintestinal pathogenic E. coli (ExPEC) infections. Notably, pSDJ2009-52F shares high sequence identity with pSF-088-1, a plasmid reported in an E. coli ST95 strain from a patient with blood sepsis from a hospital in San Francisco. These data suggest that extraintestinal infections caused by E. coli carrying ColV-like plasmids, irrespective of their phylogroup or ST, may pose a potential threat to human health, particularly to the elderly and immunocompromised. Copyright © 2018. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.