Menu
September 22, 2019  |  

Transcriptome profiling using single-molecule direct RNA sequencing approach for in-depth understanding of genes in secondary metabolism pathways of Camellia sinensis.

Characteristic secondary metabolites, including flavonoids, theanine and caffeine, are important components of Camellia sinensis, and their biosynthesis has attracted widespread interest. Previous studies on the biosynthesis of these major secondary metabolites using next-generation sequencing technologies limited the accurately prediction of full-length (FL) splice isoforms. Herein, we applied single-molecule sequencing to pooled tea plant tissues, to provide a more complete transcriptome of C. sinensis. Moreover, we identified 94 FL transcripts and four alternative splicing events for enzyme-coding genes involved in the biosynthesis of flavonoids, theanine and caffeine. According to the comparison between long-read isoforms and assemble transcripts, we improved the quality and accuracy of genes sequenced by short-read next-generation sequencing technology. The resulting FL transcripts, together with the improved assembled transcripts and identified alternative splicing events, enhance our understanding of genes involved in the biosynthesis of characteristic secondary metabolites in C. sinensis.


September 22, 2019  |  

PacBio full-length transcriptome profiling of insect mitochondrial gene expression.

In this study, we sequenced the first full-length insect transcriptome using the Erthesina fullo Thunberg based on the PacBio platform. We constructed the first quantitative transcription map of animal mitochondrial genomes and built a straightforward and concise methodology to investigate mitochondrial gene transcription, RNA processing, mRNA maturation and several other related topics. Most of the results were consistent with the previous studies, while to the best of our knowledge some findings were reported for the first time in this study. The new findings included the high levels of mitochondrial gene expression, the 3′ polyadenylation and possible 5′ m(7)G caps of rRNAs, the isoform diversity of 12S rRNA, the polycistronic transcripts and natural antisense transcripts of mitochondrial genes et al. These findings could challenge and enrich fundamental concepts of mitochondrial gene transcription and RNA processing, particularly of the rRNA primary (sequence) structure. The methodology constructed in this study can also be used to study gene expression or RNA processing of nuclear genomes.


September 22, 2019  |  

Computational identification of novel genes: current and future perspectives.

While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies.


September 22, 2019  |  

The role of MHC-E in T cell immunity is conserved among humans, rhesus macaques, and cynomolgus macaques.

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology. Copyright © 2017 by The American Association of Immunologists, Inc.


September 22, 2019  |  

Single-molecule long-read transcriptome profiling of Platysternon megacephalum mitochondrial genome with gene rearrangement and control region duplication.

Platysternon megacephalum is the sole living representative of the poorly studied turtle lineage Platysternidae. Their mitochondrial genome has been subject to gene rearrangement and control region duplication, resulting in a unique mitochondrial gene order in vertebrates. In this study, we sequenced the first full-length turtle (P. megacephalum) liver transcriptome using single-molecule real-time sequencing to study the transcriptional mechanisms of its mitochondrial genome. ND5 and ND6 anti-sense (ND6AS) forms a single transcript with the same expression in the human mitochondrial genome, but here we demonstrated differential expression of the rearranged ND5 and ND6AS genes in P. megacephalum. And some polycistronic transcripts were also reported in this study. Notably, we detected some novel long non-coding RNAs with alternative polyadenylation from the duplicated control region, and a novel ND6AS transcript composed of a long non-coding sequence, ND6AS, and tRNA-GluAS. These results provide the first description of a mtDNA transcriptome with gene rearrangement and control region duplication. These findings further our understanding of the fundamental concepts of mitochondrial gene transcription and RNA processing, and provide a new insight into the mechanism of transcription regulation of the mitochondrial genome.


September 22, 2019  |  

High-confidence coding and noncoding transcriptome maps.

The advent of high-throughput RNA sequencing (RNA-seq) has led to the discovery of unprecedentedly immense transcriptomes encoded by eukaryotic genomes. However, the transcriptome maps are still incomplete partly because they were mostly reconstructed based on RNA-seq reads that lack their orientations (known as unstranded reads) and certain boundary information. Methods to expand the usability of unstranded RNA-seq data by predetermining the orientation of the reads and precisely determining the boundaries of assembled transcripts could significantly benefit the quality of the resulting transcriptome maps. Here, we present a high-performing transcriptome assembly pipeline, called CAFE, that significantly improves the original assemblies, respectively assembled with stranded and/or unstranded RNA-seq data, by orienting unstranded reads using the maximum likelihood estimation and by integrating information about transcription start sites and cleavage and polyadenylation sites. Applying large-scale transcriptomic data comprising 230 billion RNA-seq reads from the ENCODE, Human BodyMap 2.0, The Cancer Genome Atlas, and GTEx projects, CAFE enabled us to predict the directions of about 220 billion unstranded reads, which led to the construction of more accurate transcriptome maps, comparable to the manually curated map, and a comprehensive lncRNA catalog that includes thousands of novel lncRNAs. Our pipeline should not only help to build comprehensive, precise transcriptome maps from complex genomes but also to expand the universe of noncoding genomes.© 2017 You et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Recurrent structural variation, clustered sites of selection, and disease risk for the complement factor H (CFH) gene family.

Structural variation and single-nucleotide variation of the complement factor H (CFH) gene family underlie several complex genetic diseases, including age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (AHUS). To understand its diversity and evolution, we performed high-quality sequencing of this ~360-kbp locus in six primate lineages, including multiple human haplotypes. Comparative sequence analyses reveal two distinct periods of gene duplication leading to the emergence of four CFH-related (CFHR) gene paralogs (CFHR2 and CFHR4 ~25-35 Mya and CFHR1 and CFHR3 ~7-13 Mya). Remarkably, all evolutionary breakpoints share a common ~4.8-kbp segment corresponding to an ancestral CFHR gene promoter that has expanded independently throughout primate evolution. This segment is recurrently reused and juxtaposed with a donor duplication containing exons 8 and 9 from ancestral CFH, creating four CFHR fusion genes that include lineage-specific members of the gene family. Combined analysis of >5,000 AMD cases and controls identifies a significant burden of a rare missense mutation that clusters at the N terminus of CFH [P = 5.81 × 10-8, odds ratio (OR) = 9.8 (3.67-Infinity)]. A bipolar clustering pattern of rare nonsynonymous mutations in patients with AMD (P < 10-3) and AHUS (P = 0.0079) maps to functional domains that show evidence of positive selection during primate evolution. Our structural variation analysis in >2,400 individuals reveals five recurrent rearrangement breakpoints that show variable frequency among AMD cases and controls. These data suggest a dynamic and recurrent pattern of mutation critical to the emergence of new CFHR genes but also in the predisposition to complex human genetic disease phenotypes.


September 22, 2019  |  

Proteomic detection of immunoglobulin light chain variable region peptides from amyloidosis patient biopsies.

Immunoglobulin light chain (LC) amyloidosis (AL) is caused by deposition of clonal LCs produced by an underlying plasma cell neoplasm. The clonotypic LC sequences are unique to each patient, and they cannot be reliably detected by either immunoassays or standard proteomic workflows that target the constant regions of LCs. We addressed this issue by developing a novel sequence template-based workflow to detect LC variable (LCV) region peptides directly from AL amyloid deposits. The workflow was implemented in a CAP/CLIA compliant clinical laboratory dedicated to proteomic subtyping of amyloid deposits extracted from either formalin-fixed paraffin-embedded tissues or subcutaneous fat aspirates. We evaluated the performance of the workflow on a validation cohort of 30 AL patients, whose amyloidogenic clone was identified using a novel proteogenomics method, and 30 controls. The recall and negative predictive values of the workflow, when identifying the gene family of the AL clone, were 93 and 98%, respectively. Application of the workflow on a clinical cohort of 500 AL amyloidosis samples highlighted a bias in the LCV gene families used by the AL clones. We also detected similarity between AL clones deposited in multiple organs of systemic AL patients. In summary, AL proteomic data sets are rich in LCV region peptides of potential clinical significance that are recoverable with advanced bioinformatics.


September 22, 2019  |  

SparseIso: a novel Bayesian approach to identify alternatively spliced isoforms from RNA-seq data.

Recent advances in high-throughput RNA sequencing (RNA-seq) technologies have made it possible to reconstruct the full transcriptome of various types of cells. It is important to accurately assemble transcripts or identify isoforms for an improved understanding of molecular mechanisms in biological systems.We have developed a novel Bayesian method, SparseIso, to reliably identify spliced isoforms from RNA-seq data. A spike-and-slab prior is incorporated into the Bayesian model to enforce the sparsity for isoform identification, effectively alleviating the problem of overfitting. A Gibbs sampling procedure is further developed to simultaneously identify and quantify transcripts from RNA-seq data. With the sampling approach, SparseIso estimates the joint distribution of all candidate transcripts, resulting in a significantly improved performance in detecting lowly expressed transcripts and multiple expressed isoforms of genes. Both simulation study and real data analysis have demonstrated that the proposed SparseIso method significantly outperforms existing methods for improved transcript assembly and isoform identification.The SparseIso package is available at http://github.com/henryxushi/SparseIso.xuan@vt.edu.Supplementary data are available at Bioinformatics online.© The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com


September 22, 2019  |  

wtf genes are prolific dual poison-antidote meiotic drivers.

Meiotic drivers are selfish genes that bias their transmission into gametes, defying Mendelian inheritance. Despite the significant impact of these genomic parasites on evolution and infertility, few meiotic drive loci have been identified or mechanistically characterized. Here, we demonstrate a complex landscape of meiotic drive genes on chromosome 3 of the fission yeasts Schizosaccharomyces kambucha and S. pombe. We identify S. kambucha wtf4 as one of these genes that acts to kill gametes (known as spores in yeast) that do not inherit the gene from heterozygotes. wtf4 utilizes dual, overlapping transcripts to encode both a gamete-killing poison and an antidote to the poison. To enact drive, all gametes are poisoned, whereas only those that inherit wtf4 are rescued by the antidote. Our work suggests that the wtf multigene family proliferated due to meiotic drive and highlights the power of selfish genes to shape genomes, even while imposing tremendous costs to fertility.


September 22, 2019  |  

Rodent papillomaviruses.

Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.


September 22, 2019  |  

Differential expression analysis of olfactory genes based on a combination of sequencing platforms and behavioral investigations in Aphidius gifuensis.

Aphidius gifuensis Ashmead is a dominant endoparasitoid of aphids, such as Myzus persicae and Sitobion avenae, and plays an important role in controlling aphids in various habitats, including tobacco plants and wheat in China. A. gifuensis has been successfully applied for the biological control of aphids, especially M. persicae, in green houses and fields in China. The corresponding parasites, as well as its mate-searching behaviors, are subjects of considerable interest. Previous A. gifuensis transcriptome studies have relied on short-read next-generation sequencing (NGS), and the vast majority of the resulting isotigs do not represent full-length cDNA. Here, we employed a combination of NGS and single-molecule real-time (SMRT) sequencing of virgin females (VFs), mated females (MFs), virgin males (VMs), and mated males (MMs) to comprehensively study the A. gifuensis transcriptome. Behavioral responses to the aphid alarm pheromone (E-ß-farnesene, EBF) as well as to A. gifuensis of the opposite sex were also studied. VMs were found to be attracted by female wasps and MFs were repelled by male wasps, whereas MMs and VFs did not respond to the opposite sex. In addition, VFs, MFs, and MMs were attracted by EBF, while VMs did not respond. According to these results, we performed a personalized differential gene expression analysis of olfactory gene sets (66 odorant receptors, 25 inotropic receptors, 16 odorant-binding proteins, and 12 chemosensory proteins) in virgin and mated A. gifuensis of both sexes, and identified 13 candidate genes whose expression levels were highly consistent with behavioral test results, suggesting potential functions for these genes in pheromone perception.


September 22, 2019  |  

Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26.

Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G?>?A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome. © The Author 2017. Published by Oxford University Press.


September 22, 2019  |  

Influenza virus infection causes global RNAPII termination defects.

Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3′ ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3′ extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.


September 22, 2019  |  

Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription.

Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis.Here we describe an application of SMRT technology to follow the activity of reverse transcriptase enzymes synthesizing cDNA on thousands of single RNA templates simultaneously in real time with single nucleotide turnover resolution using arrays of ZMWs. This method thereby obtains information from the RNA template directly. The analysis of the kinetics of the reverse transcriptase can be used to identify RNA base modifications, shown by example for N6-methyladenine (m6A) in oligonucleotides and in a specific mRNA extracted from total cellular mRNA. Furthermore, the real-time reverse transcriptase dynamics informs about RNA secondary structure and its rearrangements, as demonstrated on a ribosomal RNA and an mRNA template.Our results highlight the feasibility of studying RNA modifications and RNA structural rearrangements in ZMWs in real time. In addition, they suggest that technology can be developed for direct RNA sequencing provided that the reverse transcriptase is optimized to resolve homonucleotide stretches in RNA.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.