Menu
September 22, 2019  |  

Altered expression of the FMR1 splicing variants landscape in premutation carriers.

FMR1 premutation carriers (55-200 CGG repeats) are at risk for developing Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), an adult onset neurodegenerative disorder. Approximately 20% of female carriers will develop Fragile X-associated Primary Ovarian Insufficiency (FXPOI), in addition to a number of clinical problems affecting premutation carriers throughout their life span. Marked elevation in FMR1 mRNA levels have been observed with premutation alleles resulting in RNA toxicity, the leading molecular mechanism proposed for the FMR1 associated disorders observed in premutation carriers. The FMR1 gene undergoes alternative splicing and we have recently reported that the relative abundance of all FMR1 mRNA isoforms is significantly increased in premutation carriers. In this study, we characterized the transcriptional FMR1 isoforms distribution pattern in different tissues and identified a total of 49 isoforms, some of which observed only in premutation carriers and which might play a role in the pathogenesis of FXTAS. Further, we investigated the distribution pattern and expression levels of the FMR1 isoforms in asymptomatic premutation carriers and in those with FXTAS and found no significant differences between the two groups. Our findings suggest that the characterization of the expression levels of the different FMR1 isoforms is fundamental for understanding the regulation of the FMR1 gene as imbalance in their expression could lead to an altered functional diversity with neurotoxic consequences. Their characterization will also help to elucidating the mechanism(s) by which “toxic gain of function” of the FMR1 mRNA may play a role in FXTAS and/or in the other FMR1-associated conditions. Copyright © 2017. Published by Elsevier B.V.


September 22, 2019  |  

Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation.

Species-specific, new, or “orphan” genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.© 2018 Werner et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Transcriptional fates of human-specific segmental duplications in brain.

Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.© 2018 Dougherty et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

The state of play in higher eukaryote gene annotation.

A genome sequence is worthless if it cannot be deciphered; therefore, efforts to describe – or ‘annotate’ – genes began as soon as DNA sequences became available. Whereas early work focused on individual protein-coding genes, the modern genomic ocean is a complex maelstrom of alternative splicing, non-coding transcription and pseudogenes. Scientists – from clinicians to evolutionary biologists – need to navigate these waters, and this has led to the design of high-throughput, computationally driven annotation projects. The catalogues that are being produced are key resources for genome exploration, especially as they become integrated with expression, epigenomic and variation data sets. Their creation, however, remains challenging.


September 22, 2019  |  

Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins.

Molecular diversity of surface receptors has been hypothesized to provide a mechanism for selective synaptic connectivity. Neurexins are highly diversified receptors that drive the morphological and functional differentiation of synapses. Using a single cDNA sequencing approach, we detected 1,364 unique neurexin-a and 37 neurexin-ß mRNAs produced by alternative splicing of neurexin pre-mRNAs. This molecular diversity results from near-exhaustive combinatorial use of alternative splice insertions in Nrxn1a and Nrxn2a. By contrast, Nrxn3a exhibits several highly stereotyped exon selections that incorporate novel elements for posttranscriptional regulation of a subset of transcripts. Complexity of Nrxn1a repertoires correlates with the cellular complexity of neuronal tissues, and a specific subset of isoforms is enriched in a purified cell type. Our analysis defines the molecular diversity of a critical synaptic receptor and provides evidence that neurexin diversity is linked to cellular diversity in the nervous system. Copyright © 2014 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1) gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.


September 22, 2019  |  

Single-cell mRNA isoform diversity in the mouse brain.

Alternative mRNA isoform usage is an important source of protein diversity in mammalian cells. This phenomenon has been extensively studied in bulk tissues, however, it remains unclear how this diversity is reflected in single cells.Here we use long-read sequencing technology combined with unique molecular identifiers (UMIs) to reveal patterns of alternative full-length isoform expression in single cells from the mouse brain. We found a surprising amount of isoform diversity, even after applying a conservative definition of what constitutes an isoform. Genes tend to have one or a few isoforms highly expressed and a larger number of isoforms expressed at a low level. However, for many genes, nearly every sequenced mRNA molecule was unique, and many events affected coding regions suggesting previously unknown protein diversity in single cells. Exon junctions in coding regions were less prone to splicing errors than those in non-coding regions, indicating purifying selection on splice donor and acceptor efficiency.Our findings indicate that mRNA isoform diversity is an important source of biological variability also in single cells.


September 22, 2019  |  

Universal alternative splicing of noncoding exons.

The human transcriptome is so large, diverse, and dynamic that, even after a decade of investigation by RNA sequencing (RNA-seq), we have yet to resolve its true dimensions. RNA-seq suffers from an expression-dependent bias that impedes characterization of low-abundance transcripts. We performed targeted single-molecule and short-read RNA-seq to survey the transcriptional landscape of a single human chromosome (Hsa21) at unprecedented resolution. Our analysis reaches the lower limits of the transcriptome, identifying a fundamental distinction between protein-coding and noncoding gene content: almost every noncoding exon undergoes alternative splicing, producing a seemingly limitless variety of isoforms. Analysis of syntenic regions of the mouse genome shows that few noncoding exons are shared between human and mouse, yet human splicing profiles are recapitulated on Hsa21 in mouse cells, indicative of regulation by a deeply conserved splicing code. We propose that noncoding exons are functionally modular, with alternative splicing generating an enormous repertoire of potential regulatory RNAs and a rich transcriptional reservoir for gene evolution. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells.

Full-length RNA sequencing (RNA-Seq) has been applied to bulk tissue, cell lines and sorted cells to characterize transcriptomes, but applying this technology to single cells has proven to be difficult, with less than ten single-cell transcriptomes having been analyzed thus far. Although single splicing events have been described for =200 single cells with statistical confidence, full-length mRNA analyses for hundreds of cells have not been reported. Single-cell short-read 3′ sequencing enables the identification of cellular subtypes, but full-length mRNA isoforms for these cell types cannot be profiled. We developed a method that starts with bulk tissue and identifies single-cell types and their full-length RNA isoforms without fluorescence-activated cell sorting. Using single-cell isoform RNA-Seq (ScISOr-Seq), we identified RNA isoforms in neurons, astrocytes, microglia, and cell subtypes such as Purkinje and Granule cells, and cell-type-specific combination patterns of distant splice sites. We used ScISOr-Seq to improve genome annotation in mouse Gencode version 10 by determining the cell-type-specific expression of 18,173 known and 16,872 novel isoforms.


September 22, 2019  |  

Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing.

Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1a, Nrxn1ß, Nrxn2ß, Nrxn3a, and Nrxn3ß mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1a and Nrxn3a (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-a, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that a-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.


September 22, 2019  |  

LSCplus: a fast solution for improving long read accuracy by short read alignment.

The single molecule, real time (SMRT) sequencing technology of Pacific Biosciences enables the acquisition of transcripts from end to end due to its ability to produce extraordinarily long reads (>10 kb). This new method of transcriptome sequencing has been applied to several projects on humans and model organisms. However, the raw data from SMRT sequencing are of relatively low quality, with a random error rate of approximately 15 %, for which error correction using next-generation sequencing (NGS) short reads is typically necessary. Few tools have been designed that apply a hybrid sequencing approach that combines NGS and SMRT data, and the most popular existing tool for error correction, LSC, has computing resource requirements that are too intensive for most laboratory and research groups. These shortcomings severely limit the application of SMRT long reads for transcriptome analysis.Here, we report an improved tool (LSCplus) for error correction with the LSC program as a reference. LSCplus overcomes the disadvantage of LSC’s time consumption and improves quality. Only 1/3-1/4 of the time and 1/20-1/25 of the error correction time is required using LSCplus compared with that required for using LSC.LSCplus is freely available at http://www.herbbol.org:8001/lscplus/ . Sample calculations are provided illustrating the precision and efficiency of this method regarding error correction and isoform detection.


September 22, 2019  |  

Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon

A significant portion of genes in vertebrate genomes belongs to multigene families, with each family containing several gene copies whose presence/absence, as well as isoform structure, can be highly variable across individuals. Existing de novo techniques for assaying the sequences of such highly-similar gene families fall short of reconstructing end-to-end transcripts with nucleotide-level precision or assigning alternatively spliced transcripts to their respective gene copies. We present IsoCon, a high-precision method using long PacBio Iso-Seq reads to tackle this challenge. We apply IsoCon to nine Y chromosome ampliconic gene families and show that it outperforms existing methods on both experimental and simulated data. IsoCon has allowed us to detect an unprecedented number of novel isoforms and has opened the door for unraveling the structure of many multigene families and gaining a deeper understanding of genome evolution and human diseases.


September 22, 2019  |  

Targeted sequencing of ampliconic gene transcripts from total human male testis RNA

The protocol summarizes all the steps towards the construction of PacBio and Illumina sequencing libraries of transcripts from nine Y chromosome ampliconic gene families starting from total human male testis RNA from two human males. This method is based on PacBio’s Isoform Sequencing method (Iso-Seq) using the Clontech SMARTer PCR cDNA Synthesis Kit and No Size Selection with some modifications.


September 22, 2019  |  

Single-cell RNAseq for the study of isoforms-how is that possible?

Single-cell RNAseq and alternative splicing studies have recently become two of the most prominent applications of RNAseq. However, the combination of both is still challenging, and few research efforts have been dedicated to the intersection between them. Cell-level insight on isoform expression is required to fully understand the biology of alternative splicing, but it is still an open question to what extent isoform expression analysis at the single-cell level is actually feasible. Here, we establish a set of four conditions that are required for a successful single-cell-level isoform study and evaluate how these conditions are met by these technologies in published research.


September 22, 2019  |  

Quantitative isoform-profiling of highly diversified recognition molecules.

Complex biological systems rely on cell surface cues that govern cellular self-recognition and selective interactions with appropriate partners. Molecular diversification of cell surface recognition molecules through DNA recombination and complex alternative splicing has emerged as an important principle for encoding such interactions. However, the lack of tools to specifically detect and quantify receptor protein isoforms is a major impediment to functional studies. We here developed a workflow for targeted mass spectrometry by selected reaction monitoring (SRM) that permits quantitative assessment of highly diversified protein families. We apply this workflow to dissecting the molecular diversity of the neuronal neurexin receptors and uncover an alternative splicing-dependent recognition code for synaptic ligands.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.