Menu
July 7, 2019  |  

Complete genome sequences of Mycobacterium kansasii strains isolated from rhesus macaques.

Mycobacterium kansasii is a nontuberculous mycobacterium. It causes opportunistic infections with pulmonary and extrapulmonary manifestations. We report here the complete genome sequences of two M. kansasii strains isolated from rhesus macaques. We performed genome comparisons with human and environmental isolates of M. kansasii to assess the genomic diversity of this species. Copyright © 2017 Panda et al.


July 7, 2019  |  

Complete genome sequencing of Streptomyces sp. strain MOE7, which produces an extracellular polysaccharide with antioxidant and antitumor activities.

Streptomyces sp. strain MOE7 is a Gram-positive filamentous bacterium isolated from agricultural soil in Columbia, Missouri, USA. Strain MOE7 produces an extracellular polysaccharide with antioxidant and antitumor activities. Through PacBio RSII sequencing, the MOE7 genome was found to be a linear chromosome of 8,399,509 bp with 6,782 protein-coding sequences. Copyright © 2017 Elnahas et al.


July 7, 2019  |  

Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance.

Isolates of the Mycobacterium tuberculosis lineage 2/East-Asian are considered one of the most successful strains due to their increased pathogenicity, hyper-virulence associated with drug resistance, and high transmission. Recent studies in Colombia have shown that the Beijing-like genotype is associated with multidrug-resistance and high prevalence in the southwest of the country, but the genetic basis of its success in dissemination is unknown. In contribution to this matter, we obtained the whole sequences of six genomes of clinical isolates assigned to the Beijing-like genotype. The genomes were compared with the reference genome of M. tuberculosis H37Rv and 53 previously published M. tuberculosis genomes. We found that the six Beijing-like isolates belong to a modern Beijing sub-lineage and share specific genomic variants: i.e. deletion in the PPE8 gene, in Rv3806c (ubiA) responsible of high ethambutol resistance and in Rv3862c (whiB6) which is involved in granuloma formation and virulence, are some of them. Moreover, each isolated has exclusively single nucleotide polymorphisms (SNPs) in genes related with cell wall processes and cell metabolism. We identified polymorphisms in genes related to drug resistance that could explain the drug-resistant phenotypes found in the six isolates from Colombia. We hypothesize that changes due to these genetic variations contribute to the success of these strains. Finally, we analyzed the IS6110 insertion sequences finding very low variance between them, suggesting that SNPs is the major cause of variability found in Beijing-like strains circulating in Colombia. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Clostridioides difficile epidemic strain DH/NAP11/106/ST-42, isolated from stool from a pediatric patient with diarrhea.

We report here the complete genome sequence of Clostridioides difficile strain DH/NAP11/106/ST-42, which is now the most common strain causing C. difficile infection among U.S. adults. This strain was isolated from the stool from a hospitalized pediatric patient with frequent relapses of C. difficile infection. Copyright © 2017 Ozer et al.


July 7, 2019  |  

Complete genome sequence of Staphylococcus epidermidis ATCC 12228 chromosome and plasmids, generated by long-read sequencing.

Staphylococcus epidermidis ATCC 12228 was sequenced using a long-read method to generate a complete genome sequence, including some plasmid sequences. Some differences from the previously generated short-read sequence of this nonpathogenic and non-biofilm-forming strain were noted. The assembly size was 2,570,371 bp with a total G+C% content of 32.08%. Copyright © 2017 MacLea and Trachtenberg.


July 7, 2019  |  

Complete genome sequence of Dehalobacterium formicoaceticum strain DMC, a strictly anaerobic dichloromethane-degrading bacterium.

Dehalobacterium formicoaceticum utilizes dichloromethane as the sole energy source in defined anoxic bicarbonate-buffered mineral salt medium. The products are formate, acetate, inorganic chloride, and biomass. The bacterium’s genome was sequenced using PacBio, assembled, and annotated. The complete genome consists of one 3.77-Mb circular chromosome harboring 3,935 predicted protein-encoding genes. Copyright © 2017 Chen et al.


July 7, 2019  |  

Whole-genome sequences of bacteremia isolates of Bordetella holmesii.

Bordetella holmesii causes respiratory and invasive diseases in humans, but its pathogenesis remains poorly understood. We report here the genome sequences of seven bacteremia isolates of B. holmesii, including the type strain. Comparative analysis of these sequences may aid studies of B. holmesii biology and assist in the development of species-specific diagnostic strategies. Copyright © 2017 Tettelin et al.


July 7, 2019  |  

Complete genome sequence of a strain of Bifidobacterium pseudolongum isolated from mouse feces and associated with improved organ transplant outcome.

Here, we report the complete genome sequence of Bifidobacterium pseudolongum strain UMB-MBP-01, isolated from the feces of C57BL/6J mice. This strain was identified in microbiome profiling studies and associated with improved transplant outcome in a murine model of cardiac heterotypic transplantation. Copyright © 2017 Mongodin et al.


July 7, 2019  |  

Exception to the rule: Genomic characterization of naturally occurring unusual Vibrio cholerae strains with a single chromosome.

The genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition to large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as are recA and mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.


July 7, 2019  |  

Complete genome sequence of Clostridium perfringens LLY_N11, a necrotic enteritis-inducing strain isolated from a healthy chicken intestine.

Clostridium perfringens strain LLY_N11, a commensal bacterium, which previously induced necrotic enteritis in an experimental study, was isolated from the intestine of a young healthy chicken. Here, we present the complete genome sequence of this strain, which may provide a better understanding of the molecular mechanisms involved in necrotic enteritis pathogenesis.


July 7, 2019  |  

Genomic variation and evolution of Vibrio parahaemolyticus ST36 over the course of a transcontinental epidemic expansion.

Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming.IMPORTANCEVibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.


July 7, 2019  |  

Complete genome sequences of Clostridium perfringens Del1 strain isolated from chickens affected by necrotic enteritis.

Clostridium perfringens is ubiquitous in nature. It is a normal inhabitant in the intestinal tract of animals and humans. As the primary etiological agent of gas gangrene, necrosis and bacteremia, C. perfringens causes food poisoning, necrotic enteritis (NE), and even death. Epidemiology research has indicated that the increasing incidence of NE in poultry is associated with the withdrawal of in-feed antibiotic growth promoters in poultry production in response to government regulations. The recent omics studies have indicated that bacterial virulence is typically linked to highly efficient conjugative transfer of toxins, or plasmids carrying antibiotic-resistance traits. Currently, there is limited information on understanding of host-pathogen interaction in NE caused by virulent strains of C. perfringens. Elucidating such pathogenesis has practical impacts on fighting infectious diseases through adopting strategies of prophylactic or therapeutic interventions. In this report, we sequenced and analyzed the genome of C. perfringens Del1 strain using the hybrid of PacBio and Illumina sequencing technologies.Sequence analysis indicated that Del1 strain comprised a single circular chromosome with a complete 3,559,163 bp and 4 plasmids: pDel1_1 (82,596 bp), pDel1_2 (69,827 bp), pDel1_3 (49,582 bp), and pDel1_4 (49,728 bp). The genome had 3361 predicted coding DNA sequences, harbored numerous genes for pathogenesis and virulence factors, including 6 for antibiotic and antimicrobial resistance, and 3 phage-encoded genes. Phylogenetic analysis revealed that Del1 strain had similar genome and plasmid sequences to the CP4 strain.Complete chromosomal and plasmid sequences of Del1 strain are presented in this report. Since Del1 was isolated from a field disease outbreak, this strain is a good source to identify virulent genes that cause many damaging effects of Clostridial infections in chicken gut. Genome sequencing of the chicken pathogenic isolates from commercial farms provides valuable insights into the molecular pathogenesis of C. perfringens as a gastrointestinal pathogen in food animals. The detailed information on gene sequencing of this important field strain will benefit the development of novel vaccines specific for C. perfringens-induced NE in chickens.


July 7, 2019  |  

Lysosomal Cathepsin A plays a significant role in the processing of endogenous bioactive peptides.

Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSA(S190A) . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and endothelin-I in the kidney, liver, lung, brain and serum from CTSA(S190A) mouse model at 3- and 6-months of age. Our results suggest CTSA selectively contributes to processing of bioactive peptides in different tissues from CTSA(S190A) mice compared to age matched WT mice.


July 7, 2019  |  

Genome sequences of Ralstonia insidiosa type strain ATCC 49129 and strain FC1138, a strong biofilm producer isolated from a fresh-cut produce-processing plant.

Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. Copyright © 2016 Xu et al.


July 7, 2019  |  

Complete genome sequence of Serratia marcescens U36365, a green pigment–producing strain isolated from a patient with urinary tract infection.

Serratia marcescens is an emerging nosocomial pathogen associated with urinary and respiratory tract infections. In this study, we determined the genome of a green pigment-producing clinical strain, U36365, isolated from a hospital in Southern India. De novo assembly of PacBio long-read sequencing indicates that the U36365 genome consists of a chromosome of 5.12 Mbps and no plasmids. Copyright © 2016 Sahni et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.