Menu
September 22, 2019  |  

Reconstitution of eukaryotic chromosomes and manipulation of DNA N6-methyladenine alters chromatin and gene expression

DNA N6-adenine methylation (6mA) has recently been reported in diverse eukaryotes, spanning unicellular organisms to metazoans. Yet the functional significance of 6mA remains elusive due to its low abundance, difficulty of manipulation within native DNA, and lack of understanding of eukaryotic 6mA writers. Here, we report a novel DNA 6mA methyltransferase in ciliates, termed MTA1. The enzyme contains an MT-A70 domain but is phylogenetically distinct from all known RNA and DNA methyltransferases. Disruption of MTA1 in vivo leads to the genome-wide loss of 6mA in asexually growing cells and abolishment of the consensus ApT dimethylated motif. Genes exhibit subtle changes in chromatin organization or RNA expression upon loss of 6mA, depending on their starting methylation level. Mutants fail to complete the sexual cycle, which normally coincides with a peak of MTA1 expression. Thus, MTA1 functions in a developmental stage-specific manner. We determine the impact of 6mA on chromatin organization in vitro by reconstructing complete, full-length ciliate chromosomes harboring 6mA in native or ectopic positions. Using these synthetic chromosomes, we show that 6mA directly disfavors nucleosomes in vitro in a local, quantitative manner, independent of DNA sequence. Furthermore, the chromatin remodeler ACF can overcome this effect. Our study identifies a novel MT-A70 protein necessary for eukaryotic 6mA methylation and defines the impact of 6mA on chromatin organization using epigenetically defined synthetic chromosomes.


September 22, 2019  |  

Acquired interbacterial defense systems protect against interspecies antagonism in the human gut microbiome

The genomes of bacteria derived from the gut microbiota are replete with pathways that mediate contact-dependent interbacterial antagonism. However, the role of direct interactions between co-resident microbes in driving microbiome composition is not well understood. Here we report the widespread occurrence of acquired interbacterial defense (AID) gene clusters in the human gut microbiome. These clusters are found on predicted mobile elements and encode arrays of immunity genes that confer protection against interbacterial toxin-mediated antagonism in vitro and in gnotobiotic mice. We find that Bacteroides ovatus strains containing AID systems that inactivate B. fragilis toxins delivered between cells by the type VI secretion system are enriched in samples lacking detectable B. fragilis. Moreover, these strains display significantly higher abundance in gut metagenomes than strains without AID systems. Finally, we identify a recombinase-associated AID subtype present broadly in Bacteroidales genomes with features suggestive of active gene acquisition. Our data suggest that neutralization of contact-dependent interbacterial antagonism via AID systems plays an important role in shaping human gut microbiome ecology.


September 22, 2019  |  

Analysis of structural variants in four African cichlids highlights an association with developmental and immune related genes

African Lakes Cichlids are one of the most impressive example of adaptive radiation. Independently in Lake Victoria, Tanganyika, and Malawi, several hundreds of species arose within the last 10 million to 100,000 years. Whereas most analyses in cichlids focused on nucleotide substitutions across species to investigate the genetic bases of this explosive radiation, to date, no study has investigated the contribution of structural variants (SVs) to speciation events (through a reduction of gene flow) and adaptation to different ecological niches. Here, we annotate and characterize the repertoires and evolutionary potential of different SV classes (deletion, duplication, inversion, insertions and translocations) in five cichlid species (Astatotilapia burtoni, Metriaclima zebra, Neolamprologus brichardi, Pundamilia nyererei and Oreochromis niloticus). We investigate the patterns of gain/loss evolution across the phylogeny for each SV type enabling the identification of both lineage specific events and a set of conserved SVs, common to all four species in the radiation. Both deletion and inversion events show a significant overlap with SINE elements, while inversions additionally show a limited, but significant association with DNA transposons. Genes lying inside inverted regions are enriched for genes regulating behaviour, or involved in skeletal and visual system development. Moreover, we find that duplicated genes show enrichment for textquoterightantigen processing and presentationtextquoteright (GO:0019882) and other immune related categories. Altogether, we provide the first, comprehensive overview of rearrangement evolution in East African Cichlids, and some initial insights into their possible contribution to adaptation.


September 22, 2019  |  

Molecular characteristics and comparative genomics analysis of a clinical Enterococcus casseliflavus with a resistance plasmid.

The aim of this work was to investigate the molecular characterization of a clinical Enterococcus casseliflavus strain with a resistance plasmid.En. casseliflavus EC369 was isolated from a patient in a hospital in southern China. The minimum inhibitory concentration was found by means of the agar dilution method to determine the antimicrobial susceptibilities of the strains. Whole-genome sequencing and comparative genomics analysis were performed to analyze the mechanism of antibiotic resistance and the horizontal gene transfer of the resistance gene-related mobile genetic elements.En. casseliflavus EC369 showed resistance to erythromycin, kanamycin, and streptomycin, but was susceptible to vancomycin, ampicillin, and streptothricin and other antimicrobials. There were six resistance genes (aph3′, ant6, bla, sat4, and two ermBs) carried by a transposon identified on the plasmid pEC369 and a complete resistance gene cluster of vancomycin and a tet (M) gene encoded on the chromosome. This is the first complete plasmid sequence reported in clinically isolated En. casseliflavus. The plasmid with the greatest sequence identity with pEC369 was the plasmid of Enterococcus sp. FDAARGOS_375, followed by the plasmids of Enterococcus faecium strains F12085 and pRE25, whereas the sequence with the greatest identity to the resistance genes carrying a transposon of pEC369 was on the chromosome of Staphylococcus aureus strain GD1677.The resistance profiles of En. casseliflavus EC369 might contribute to the resistance genes encoded on the plasmid. The fact that the most similar sequence to the transposon carrying resistance genes of pEC369 was encoded in the chromosome of a S. aureus strain provides insights into the mechanism of dissemination of multidrug resistance between bacteria of different species or genera through horizontal gene transfer.


September 22, 2019  |  

Construction of stable fluorescent laboratory control strains for several food safety relevant Enterobacteriaceae.

Using naturally-occurring bacterial strains as positive controls in testing protocols is typically feared due to the risk of cross-contaminating samples. We have developed a collection of strains which express Green Fluorescent Protein (GFP) at high-level, permitting rapid screening of the following species on selective or non-selective plates: Escherichia coli O157:H7, Shigella sonnei, S. flexneri, Salmonella enterica subsp. Enterica serovar Gaminera, S. Mbandaka, S. Tennesse, S. Minnesota, S. Senftenberg and S. Typhimurium. These new strains fluoresce when irradiated with UV light and maintain this phenotype in absence of antibiotic selection. Recombinants were phenotypically equivalent to the parent strain, except for S. Tennessee Sal66 that appeared Lac- on Xylose Lysine Deoxycholate (XLD) agar plates and Lac+ on Mac Conkey and Hektoen Enteric agar plates. Analysis of closed whole genome sequences revealed that Sal66 had lost one lactose operon; slower rates of lactose metabolism may affect lactose fermentation on XLD agar. These fluorescent enteric control strains were challenging to develop and should provide an easy and effective means of identifying cross-contamination. Published by Elsevier Ltd.


September 22, 2019  |  

Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph.

The recent rise of long read sequencing technologies such as Pacific Biosciences and Oxford Nanopore allows to solve assembly problems for larger and more complex genomes than what allowed short reads technologies. However, these long reads are very noisy, reaching an error rate of around 10-15% for Pacific Biosciences, and up to 30% for Oxford Nanopore. The error correction problem has been tackled by either self-correcting the long reads, or using complementary short reads in a hybrid approach. However, even though sequencing technologies promise to lower the error rate of the long reads below 10%, it is still higher in practice, and correcting such noisy long reads remains an issue.We present HG-CoLoR, a hybrid error correction method that focuses on a seed-and-extend approach based on the alignment of the short reads to the long reads, followed by the traversal of a variable-order de Bruijn graph, built from the short reads. Our experiments show that HG-CoLoR manages to efficiently correct highly noisy long reads that display an error rate as high as 44%. When compared to other state-of-the-art long read error correction methods, our experiments also show that HG-CoLoR provides the best trade-off between runtime and quality of the results, and is the only method able to efficiently scale to eukaryotic genomes.HG-CoLoR is implemented is C++, supported on Linux platforms and freely available at https://github.com/morispi/HG-CoLoR.Supplementary data are available at Bioinformatics online.


September 22, 2019  |  

Enterobacter cloacae Complex Sequence Type 171 Isolates Expressing KPC-4 Carbapenemase Recovered from Canine Patients in Ohio.

Companion animals are likely relevant in the transmission of antimicrobial-resistant bacteria. Enterobacter xiangfangensis sequence type 171 (ST171), a clone that has been implicated in clusters of infections in humans, was isolated from two dogs with clinical disease in Ohio. The canine isolates contained IncHI2 plasmids encoding blaKPC-4 Whole-genome sequencing was used to put the canine isolates in phylogenetic context with available human ST171 sequences, as well as to characterize their blaKPC-4 plasmids. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

DNA Methylation by Restriction Modification Systems Affects the Global Transcriptome Profile in Borrelia burgdorferi.

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM systems influence transcript levels. In the current study, single-molecule real-time sequencing was utilized to map genome-wide m6A sites and to identify consensus modified motifs in wild-type B. burgdorferi as well as MTase mutants lacking either the bbe02 gene alone or both bbe02 and bbq67 genes. Four novel conserved m6A motifs were identified and were fully attributable to the presence of specific MTases. Whole-genome transcriptome changes were observed in conjunction with the loss of MTase enzymes, indicating that DNA methylation by the RM systems has effects on gene expression. Genes with altered transcription in MTase mutants include those involved in vertebrate host colonization (e.g., rpoS regulon) and acquisition by/transmission from the tick vector (e.g., rrp1 and pdeB). The results of this study provide a comprehensive view of the DNA methylation pattern in B. burgdorferi, and the accompanying gene expression profiles add to the emerging body of research on RM systems and gene regulation in bacteria.IMPORTANCE Lyme disease is the most prevalent vector-borne disease in North America and is classified by the Centers for Disease Control and Prevention (CDC) as an emerging infectious disease with an expanding geographical area of occurrence. Previous studies have shown that the causative bacterium, Borrelia burgdorferi, methylates its genome using restriction modification systems that enable the distinction from foreign DNA. Although much research has focused on the regulation of gene expression in B. burgdorferi, the effect of DNA methylation on gene regulation has not been evaluated. The current study characterizes the patterns of DNA methylation by restriction modification systems in B. burgdorferi and evaluates the resulting effects on gene regulation in this important pathogen. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus.

Meiosis is a key cellular process of sexual reproduction that includes pairing of homologous sequences. In many species however, meiosis can also involve the segregation of supernumerary chromosomes, which can lack a homolog. How these unpaired chromosomes undergo meiosis is largely unknown. In this study we investigated chromosome segregation during meiosis in the haploid fungus Zymoseptoria tritici that possesses a large complement of supernumerary chromosomes. We used isogenic whole chromosome deletion strains to compare meiotic transmission of chromosomes when paired and unpaired. Unpaired chromosomes inherited from the male parent as well as paired supernumerary chromosomes in general showed Mendelian inheritance. In contrast, unpaired chromosomes inherited from the female parent showed non-Mendelian inheritance but were amplified and transmitted to all meiotic products. We concluded that the supernumerary chromosomes of Z. tritici show a meiotic drive and propose an additional feedback mechanism during meiosis, which initiates amplification of unpaired female-inherited chromosomes.© 2018, Habig et al.


September 22, 2019  |  

Novel linezolid resistance plasmids in Enterococcus from food animals in the USA.

To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme.Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible.Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3′)-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant.To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.


September 22, 2019  |  

The changing landscape of vancomycin-resistant Enterococcus faecium in Australia: a population-level genomic study.

Vancomycin-resistant Enterococcus faecium (VREfm) represent a major source of nosocomial infection worldwide. In Australia, there has been a recent concerning increase in bacteraemia associated with the vanA genotype, prompting investigation into the genomic epidemiology of VREfm.A population-level study of VREfm (10 November-9 December 2015) was conducted. A total of 321 VREfm isolates (from 286 patients) across Victoria State were collected and sequenced with Illumina NextSeq. SNPs were used to assess relatedness. STs and genes associated with resistance and virulence were identified. The vanA-harbouring plasmid from an isolate from each ST was assembled using long-read data. Illumina reads from remaining isolates were then mapped to these assemblies to identify their probable vanA-harbouring plasmid.vanA-VREfm comprised 17.8% of isolates. ST203, ST80 and a pstS(-) clade, ST1421, predominated (30.5%, 30.5% and 37.2%, respectively). Most vanB-VREfm were ST796 (77.7%). vanA-VREfm were more closely related within hospitals versus between them [core SNPs 10 (IQR 1-357) versus 356 (179-416), respectively], suggesting discrete introductions of vanA-VREfm, with subsequent intra-hospital transmission. In contrast, vanB-VREfm had similar core SNP distributions within versus between hospitals, due to widespread dissemination of ST796. Different vanA-harbouring plasmids were found across STs. With the exception of ST78 and ST796, Tn1546 transposons also varied. Phylogenetic analysis revealed Australian strains were often interspersed with those from other countries, suggesting ongoing cross-continental transmission.Emerging vanA-VREfm in Australia is polyclonal, indicating repeat introductions of vanA-VREfm into hospitals and subsequent dissemination. The close relationship to global strains reinforces the need for ongoing screening and control of VREfm in Australia and abroad.


September 22, 2019  |  

Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation.

Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. Despite their ecological and industrial importance, their transcriptional and post-transcriptional regulation has not been systematically studied. With completion of the genome sequence of Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this psychrotolerant acetogen in response to temperature variations under autotrophic and heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly up-regulated at low temperatures under heterotrophic, as well as autotrophic, growth conditions. To mechanistically understand the transcriptional regulation of acetogenesis genes via changes in RNA secondary structures of 5′-untranslated regions (5′-UTR), the primary transcriptome was experimentally determined, and 1379 transcription start sites (TSS) and 1100 5′-UTR were found. Interestingly, acetogenesis genes contained longer 5′-UTR with lower RNA-folding free energy than other genes, revealing that the 5′-UTRs control the RNA abundance of the acetogenesis genes under low temperature conditions. Our findings suggest that post-transcriptional regulation via RNA conformational changes of 5′-UTRs is necessary for cold-adaptive acetogenesis.© 2018 Shin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.


September 22, 2019  |  

Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs.

The endosymbiotic bacterium Wolbachia pipientis has been shown to restrict a range of RNA viruses in Drosophila melanogaster and transinfected dengue mosquito, Aedes aegypti. Here, we show that Wolbachia infection enhances replication of Aedes albopictus densovirus (AalDNV-1), a single stranded DNA virus, in Aedes cell lines in a density-dependent manner. Analysis of previously produced small RNAs of Aag2 cells showed that Wolbachia-infected cells produced greater absolute abundance of virus-derived short interfering RNAs compared to uninfected cells. Additionally, we found production of virus-derived PIWI-like RNAs (vpiRNA) produced in response to AalDNV-1 infection. Nuclear fractions of Aag2 cells produced a primary vpiRNA signature U1 bias whereas the typical “ping-pong” signature (U1 – A10) was evident in vpiRNAs from the cytoplasmic fractions. This is the first report of the density-dependent enhancement of DNA viruses by Wolbachia. Further, we report the generation of vpiRNAs in a DNA virus-host interaction for the first time. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Genomic characterization of carbapenemase-producing Klebsiella pneumoniae with chromosomally encoded blaNDM-1.

We report here Klebsiella pneumoniae strains carrying chromosomal blaNDM-1 in Thailand. The genomes of these two isolates include a 160-kbp insertion containing blaNDM-1, which is almost identical to that in the IncHI1B-like plasmid. Further analysis indicated that IS5-mediated intermolecular transposition and Tn3 transposase-mediated homologous recombination resulted in the integration of blaNDM-1 into the chromosome from an IncHI1B-like plasmid. The spread of this type of carbapenem-resistant Enterobacteriaceae may threaten public health and warrants further monitoring. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Desiccation Tolerance Evolved through Gene Duplication and Network Rewiring in Lindernia.

Although several resurrection plant genomes have been sequenced, the lack of suitable dehydration-sensitive outgroups has limited genomic insights into the origin of desiccation tolerance. Here, we utilized a comparative system of closely related desiccation-tolerant (Lindernia brevidens) and -sensitive (Lindernia subracemosa) species to identify gene- and pathway-level changes associated with the evolution of desiccation tolerance. The two high-quality Lindernia genomes we assembled are largely collinear, and over 90% of genes are conserved. L. brevidens and L. subracemosa have evidence of an ancient, shared whole-genome duplication event, and retained genes have neofunctionalized, with desiccation-specific expression in L. brevidens Tandem gene duplicates also are enriched in desiccation-associated functions, including a dramatic expansion of early light-induced proteins from 4 to 26 copies in L. brevidens A comparative differential gene coexpression analysis between L. brevidens and L. subracemosa supports extensive network rewiring across early dehydration, desiccation, and rehydration time courses. Many LATE EMBRYOGENESIS ABUNDANT genes show significantly higher expression in L. brevidens compared with their orthologs in L. subracemosa Coexpression modules uniquely upregulated during desiccation in L. brevidens are enriched with seed-specific and abscisic acid-associated cis-regulatory elements. These modules contain a wide array of seed-associated genes that have no expression in the desiccation-sensitive L. subracemosa Together, these findings suggest that desiccation tolerance evolved through a combination of gene duplications and network-level rewiring of existing seed desiccation pathways.© 2018 American Society of Plant Biologists. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.