Menu
September 22, 2019  |  

The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly.

Reptiles are a species-rich group with great phenotypic and life history diversity but are highly underrepresented among the vertebrate species with sequenced genomes.Here, we report a high-quality genome assembly of the tegu lizard, Salvator merianae, the first lacertoid with a sequenced genome. We combined 74X Illumina short-read, 29.8X Pacific Biosciences long-read, and optical mapping data to generate a high-quality assembly with a scaffold N50 value of 55.4 Mb. The contig N50 value of this assembly is 521 Kb, making it the most contiguous reptile assembly so far. We show that the tegu assembly has the highest completeness of coding genes and conserved non-exonic elements (CNEs) compared to other reptiles. Furthermore, the tegu assembly has the highest number of evolutionarily conserved CNE pairs, corroborating a high assembly contiguity in intergenic regions. As in other reptiles, long interspersed nuclear elements comprise the most abundant transposon class. We used transcriptomic data, homology- and de novo gene predictions to annotate 22,413 coding genes, of which 16,995 (76%) likely have human orthologs as inferred by CESAR-derived gene mappings. Finally, we generated a multiple genome alignment comprising 10 squamates and 7 other amniote species and identified conserved regions that are under evolutionary constraint. CNEs cover 38 Mb (1.8%) of the tegu genome, with 3.3 Mb in these elements being squamate specific. In contrast to placental mammal-specific CNEs, very few of these squamate-specific CNEs (<20 Kb) overlap transposons, highlighting a difference in how lineage-specific CNEs originated in these two clades.The tegu lizard genome together with the multiple genome alignment and comprehensive conserved element datasets provide a valuable resource for comparative genomic studies of reptiles and other amniotes.


September 22, 2019  |  

Hypervirulent group A Streptococcus emergence in an acaspular background is associated with marked remodeling of the bacterial cell surface

Inactivating mutations in the control of virulence two-component regulatory system (covRS) often account for the hypervirulent phenotype in severe, invasive group A streptococcal (GAS) infections. As CovR represses production of the anti-phagocytic hyaluronic acid capsule, high level capsule production is generally considered critical to the hypervirulent phenotype induced by CovRS inactivation. There have recently been large outbreaks of GAS strains lacking capsule, but there are currently no data on the virulence of covRS-mutated, acapsular strains in vivo. We investigated the impact of CovRS inactivation in acapsular serotype M4 strains using a wild-type (M4-SC-1) and a naturally-occurring CovS-inactivated strain (M4-LC-1) that contains an 11bp covS insertion. M4-LC-1 was significantly more virulent in a mouse bacteremia model but caused smaller lesions in a subcutaneous mouse model. Over 10% of the genome showed significantly different transcript levels in M4-LC-1 vs. M4-SC-1 strain. Notably, the Mga regulon and multiple cell surface protein-encoding genes were strongly upregulated–a finding not observed for CovS-inactivated, encapsulated M1 or M3 GAS strains. Consistent with the transcriptomic data, transmission electron microscopy revealed markedly altered cell surface morphology of M4-LC-1 compared to M4-SC-1. Insertional inactivation of covS in M4-SC-1 recapitulated the transcriptome and cell surface morphology. Analysis of the cell surface following CovS-inactivation revealed that the upregulated proteins were part of the Mga regulon. Inactivation of mga in M4-LC-1 reduced transcript levels of multiple cell surface proteins and reversed the cell surface alterations consistent with the effect of CovS inactivation on cell surface composition being mediated by Mga. CovRS-inactivating mutations were detected in 20% of current invasive serotype M4 strains in the United States. Thus, we discovered that hypervirulent M4 GAS strains with covRS mutations can arise in an acapsular background and that such hypervirulence is associated with profound alteration of the cell surface.


September 22, 2019  |  

The genomic landscape of molecular responses to natural drought stress in Panicum hallii

Environmental stress is a major driver of ecological community dynamics and agricultural productivity. This is especially true for soil water availability, because drought is the greatest abiotic inhibitor of worldwide crop yields. Here, we test the genetic basis of drought responses in the genetic model for C4perennial grasses, Panicum hallii, through population genomics, field-scale gene-expression (eQTL) analysis, and comparison of two complete genomes. While gene expression networks are dominated by local cis-regulatory elements, we observe three genomic hotspots of unlinked trans-regulatory loci. These regulatory hubs are four times more drought responsive than the genome-wide average. Additionally, cis- and trans-regulatory networks are more likely to have opposing effects than expected under neutral evolution, supporting a strong influence of compensatory evolution and stabilizing selection. These results implicate trans-regulatory evolution as a driver of drought responses and demonstrate the potential for crop improvement in drought-prone regions through modification of gene regulatory networks.


September 22, 2019  |  

Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host.

Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host-symbiont system.Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species.

Candida auris is an emergent multidrug-resistant fungal pathogen causing increasing reports of outbreaks. While distantly related to C. albicans and C. glabrata, C. auris is closely related to rarely observed and often multidrug-resistant species from the C. haemulonii clade. Here, we analyze near complete genome assemblies for the four C. auris clades and three related species, and map intra- and inter-species rearrangements across the seven chromosomes. Using RNA-Seq-guided gene predictions, we find that most mating and meiosis genes are conserved and that clades contain either the MTLa or MTLa mating loci. Comparing the genomes of these emerging species to those of other Candida species identifies genes linked to drug resistance and virulence, including expanded families of transporters and lipases, as well as mutations and copy number variants in ERG11. Gene expression analysis identifies transporters and metabolic regulators specific to C. auris and those conserved with related species which may contribute to differences in drug response in this emerging fungal clade.


September 22, 2019  |  

Genomic characterization of ß-glucuronidase-positive Escherichia coli O157:H7 producing Stx2a.

Among Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a ß-glucuronidase-positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (ß-glucuronidase-negative) and GP STEC O157:H7 strains, and the Stx2-producing ability of PV15-279 is comparable to that of typical STEC O157:H7 strains; therefore, PV15-279 presents a virulence potential similar to that of typical STEC O157:H7. This study reveals the importance of GP O157:H7 as a source of highly pathogenic STEC clones.


September 22, 2019  |  

Genomic characterization of a B chromosome in Lake Malawi cichlid fishes.

B chromosomes (Bs) were discovered a century ago, and since then, most studies have focused on describing their distribution and abundance using traditional cytogenetics. Only recently have attempts been made to understand their structure and evolution at the level of DNA sequence. Many questions regarding the origin, structure, function, and evolution of B chromosomes remain unanswered. Here, we identify B chromosome sequences from several species of cichlid fish from Lake Malawi by examining the ratios of DNA sequence coverage in individuals with or without B chromosomes. We examined the efficiency of this method, and compared results using both Illumina and PacBio sequence data. The B chromosome sequences detected in 13 individuals from 7 species were compared to assess the rates of sequence replacement. B-specific sequence common to at least 12 of the 13 datasets were identified as the “Core” B chromosome. The location of B sequence homologs throughout the genome provides further support for theories of B chromosome evolution. Finally, we identified genes and gene fragments located on the B chromosome, some of which may regulate the segregation and maintenance of the B chromosome.


September 22, 2019  |  

N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses.

N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Detection and visualization of complex structural variants from long reads.

With applications in cancer, drug metabolism, and disease etiology, understanding structural variation in the human genome is critical in advancing the thrusts of individualized medicine. However, structural variants (SVs) remain challenging to detect with high sensitivity using short read sequencing technologies. This problem is exacerbated when considering complex SVs comprised of multiple overlapping or nested rearrangements. Longer reads, such as those from Pacific Biosciences platforms, often span multiple breakpoints of such events, and thus provide a way to unravel small-scale complexities in SVs with higher confidence.We present CORGi (COmplex Rearrangement detection with Graph-search), a method for the detection and visualization of complex local genomic rearrangements. This method leverages the ability of long reads to span multiple breakpoints to untangle SVs that appear very complicated with respect to a reference genome. We validated our approach against both simulated long reads, and real data from two long read sequencing technologies. We demonstrate the ability of our method to identify breakpoints inserted in synthetic data with high accuracy, and the ability to detect and plot SVs from NA12878 germline, achieving 88.4% concordance between the two sets of sequence data. The patterns of complexity we find in many NA12878 SVs match known mechanisms associated with DNA replication and structural variant formation, and highlight the ability of our method to automatically label complex SVs with an intuitive combination of adjacent or overlapping reference transformations.CORGi is a method for interrogating genomic regions suspected to contain local rearrangements using long reads. Using pairwise alignments and graph search CORGi produces labels and visualizations for local SVs of arbitrary complexity.


September 22, 2019  |  

Role of phage ?1 in two strains of Salmonella Rissen, sensitive and resistant to phage ?1.

The study describes the Salmonella Rissen phage ?1 isolated from the ?1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RR?1+, which can harbour or not ?1.Following this approach, we found that ?1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RR?1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth. The RW and RR?1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes.Phage ?1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle.


September 22, 2019  |  

Transcriptional landscape of a blaKPC-2 plasmid and response to imipenem exposure in Escherichia coli TOP10.

The diffusion of KPC-2 carbapenemase is closely related to the spread of Klebsiella pneumoniae of the clonal-group 258 and linked to IncFIIK plasmids. Little is known about the biology of multi-drug resistant plasmids and the reasons of their successful dissemination. Using E. coli TOP10 strain harboring a multi-replicon IncFIIK-IncFIB blaKPC-2-gene carrying plasmid pBIC1a from K. pneumoniae ST-258 clinical isolate BIC-1, we aimed to identify basal gene expression and the effects of imipenem exposure using whole transcriptome approach by RNA sequencing (RNA-Seq). Independently of the antibiotic pressure, most of the plasmid-backbone genes were expressed at low levels. The most expressed pBIC1a genes were involved in antibiotic resistance (blaKPC-2, blaTEM and aph(3′)-I), in plasmid replication and conjugation, or associated to mobile elements. After antibiotic exposure, 34% of E. coli (pBIC1a) genome was differentially expressed. Induction of oxidative stress response was evidenced, with numerous upregulated genes of the SoxRS/OxyR oxydative stress regulons, the Fur regulon (for iron uptake machinery), and IscR regulon (for iron sulfur cluster synthesis). Nine genes carried by pBIC1a were up-regulated, including the murein DD-endopeptidase mepM and the copper resistance operon. Despite the presence of a carbapenemase, we observed a major impact on E. coli (pBIC1a) whole transcriptome after imipenem exposure, but no effect on the level of transcription of antimicrobial resistance genes. We describe adaptive responses of E. coli to imipenem-induced stress, and identified plasmid-encoded genes that could be involved in resistance to stressful environments.


September 22, 2019  |  

The plasmid-encoded transcription factor ArdK contributes to the repression of the IMP-6 metallo-ß-lactamase gene blaIMP-6, leading to a carbapenem-susceptible phenotype in the blaIMP-6-positive Escherichia coli strain A56-1S.

Carbapenemase-producing Enterobacteriaceae (CPE) are a global concern because these bacteria are resistant to almost all ß-lactams. Horizontal interspecies gene transfer via plasmid conjugation has increased the global dissemination of CPE. Recently, an Enterobacteriaceae strain positive for carbapenemase gene but showing a carbapenem-susceptible phenotype was identified, suggesting that these susceptible strains may be challenging to detect solely via antimicrobial susceptibility tests without molecular analysis. Here, we isolated a blaIMP-6 carbapenemase-gene positive but imipenem- and meropenem-susceptible Escherichia coli (ISMS-E) strain A56-1S (imipenem and meropenem minimum inhibitory concentration, = 0.125 mg/L), from a human urine specimen in Japan. A56-1S was carbapenemase negative by the Carba NP test, suggesting that IMP-6 production was low or undetectable. Thus, to characterize the mechanism of this phenotype, a meropenem-resistant E. coli A56-1R strain was obtained using meropenem-selection. A56-1R was positive for carbapenemase production by the Carba NP test, and blaIMP-6 transcription in A56-1R was 53-fold higher than in A56-1S, indicating that blaIMP-6 in A56-1S is negatively regulated at the transcriptional level. Comparative genomic analysis between the two strains revealed that the alleviation of restriction of DNA (ardK) gene encoding a putative transcription factor is disrupted by the IS26 insertion in A56-1R. A cotransformation assay of ardK and the regulatory element upstream of blaIMP-6 showed repression of blaIMP-6 transcription, indicating that ArdK negatively modulates blaIMP-6 transcription. ArdK binding and affinity assays demonstrated that ArdK directly binds to the regulatory element upstream of blaIMP-6 with dissociation constant values comparable to those of general transcription factors. The IMP-6 carbapenemase showed low hydrolytic activity against imipenem, resulting in an imipenem-susceptible and meropenem-resistant (ISMR) phenotype (previously reported as a stealth phenotype). However, the low expression of IMP-6 in the A56-1S strain could be a typical characteristic of ISMS-E due to gene repression, indicating that conventional antimicrobial susceptibility tests might be unable to detect such strains even when using both imipenem and meropenem. Bacteria that exhibit the ISMS phenotype could play a potential role as undetectable reservoirs and might facilitate gene transfer to other organisms while avoiding detection.


September 22, 2019  |  

Emerging multidrug-resistant hybrid pathotype shiga toxin-producing Escherichia coli O80 and related strains of clonal complex 165, Europe.

Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-?, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum ß-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens.


September 22, 2019  |  

The phylogenomic diversity of herbivore- associated Fibrobacter spp. is correlated to lignocellulose-degrading potential.

Members of the genus Fibrobacter are cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novel Fibrobacter strains against the type strains for the two formally described Fibrobacter species F. succinogenes strain S85 and F. intestinalis strain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed among Fibrobacter phylotypes. F. succinogenes genomes were consistently enriched in genes encoding carbohydrate-active enzymes compared to those of F. intestinalis strains. Moreover, genomes of F. succinogenes phylotypes that are dominant in the rumen had significantly more genes annotated to major families involved in hemicellulose degradation (e.g., CE6, GH10, and GH43) than did the genomes of F. succinogenes phylotypes typically observed in the lower gut of large hindgut-fermenting herbivores such as horses. Genes encoding a putative urease were also identified in 12 of the Fibrobacter genomes, which were primarily isolated from hindgut-fermenting hosts. Screening for growth on urea as the sole source of nitrogen provided strong evidence that the urease was active in these strains. These results represent the strongest evidence reported to date for specific functional differences contributing to the ecology of Fibrobacter spp. in the herbivore gut.IMPORTANCE The herbivore gut microbiome is incredibly diverse, and a functional understanding of this diversity is needed to more reliably manipulate this community for specific gain, such as increased production in ruminant livestock. Microbial degraders of plant cell wall polysaccharides in the herbivore gut, particularly Fibrobacter spp., are of fundamental importance to their hosts for digestion of a diet consisting primarily of recalcitrant plant fibers. Considerable phylogenetic diversity exists among members of the genus Fibrobacter, but much of this diversity remains cryptic. Here, we used comparative genomics, applied to a diverse collection of recently isolated Fibrobacter strains, to identify a robust association between carbohydrate-active enzyme gene content and the Fibrobacter phylogeny. Our results provide the strongest evidence reported to date for functional differences among Fibrobacter phylotypes associated with either the rumen or the hindgut and emphasize the general significance of carbohydrate-active enzymes in the evolution of fiber-degrading bacteria. Copyright © 2018 Neumann and Suen.


September 22, 2019  |  

Approaches for surveying cosmic radiation damage in large populations of Arabidopsis thaliana seeds-Antarctic balloons and particle beams.

The Cosmic Ray Exposure Sequencing Science (CRESS) payload system is a proof of concept experiment to assess the genomic impact of space radiation on seeds. CRESS was designed as a secondary payload for the December 2016 high-altitude, high-latitude, and long-duration balloon flight carrying the Boron And Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) experimental hardware. Investigation of the biological effects of Galactic Cosmic Radiation (GCR), particularly those of ions with High-Z and Energy (HZE), is of interest due to the genomic damage this type of radiation inflicts. The biological effects of upper-stratospheric mixed radiation above Antarctica (ANT) were sampled using Arabidopsis thaliana seeds and were compared to those resulting from a controlled simulation of GCR at Brookhaven National Laboratory (BNL) and to laboratory control seed. The payload developed for Antarctica exposure was broadly designed to 1U CubeSat specifications (10cmx10cmx10cm, =1.33kg), maintained 1 atm internal pressure, and carried an internal cargo of four seed trays (about 580,000 seeds) and twelve CR-39 Solid-State Nuclear Track Detectors (SSNTDs). The irradiated seeds were recovered, sterilized and grown on Petri plates for phenotypic screening. BNL and ANT M0 seeds showed significantly reduced germination rates and elevated somatic mutation rates when compared to non-irradiated controls, with the BNL mutation rate also being significantly higher than that of ANT. Genomic DNA from mutants of interest was evaluated with whole-genome sequencing using PacBio SMRT technology. Sequence data revealed the presence of an array of genome structural variants in the genomes of M0 and M1 mutant plants.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.