Menu
October 23, 2019  |  

Identification and expression analysis of chemosensory genes in the citrus fruit fly Bactrocera (Tetradacus) minax

The citrus fruit fly Bactrocera (Tetradacus) minax is a major and devastating agricultural pest in Asian subtropical countries. Previous studies have shown that B. minax interacts with hosts via an efficient chemosensory system. However, knowledge regarding the molecular components of the B. minax chemosensory system has not yet been well established. Herein, based on our newly generated whole-genome dataset for B. minax and by comparison with the characterized genomes of 6 other fruit fly species, we identified, for the first time, a total of 25 putative odorant-binding receptors (OBPs), 4 single-copy chemosensory proteins (CSPs) and 53 candidate odorant receptors (ORs). To further survey the expression of these candidate genes, the transcriptomes from three developmental stages (larvae, pupae and adults) of B. minax and Bactrocera dorsalis were analyzed. We found that 1) at the adult developmental stage, there were 14 highly expressed OBPs (FPKM>100) in B. dorsalis and 7 highly expressed OBPs in B. minax; 2) the expression of CSP3 and CSP4 in adult B. dorsalis was higher than that in B. minax; and 3) most of the OR genes exhibited low expression at the three developmental stages in both species. This study on the identification of the chemosensory system of B. minax not only enriches the existing research on insect olfactory receptors but also provides new targets for preventative control and ecological regulation of B. minax in the future.


September 22, 2019  |  

ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm.

Evolution of pest resistance threatens the benefits of genetically engineered crops that produce Bacillus thuringiensis (Bt) insecticidal proteins. Strategies intended to delay pest resistance are most effective when implemented proactively. Accordingly, researchers have selected for and analyzed resistance to Bt toxins in many laboratory strains of pests before resistance evolves in the field, but the utility of this approach depends on the largely untested assumption that laboratory- and field-selected resistance to Bt toxins are similar. Here we compared the genetic basis of resistance to Bt toxin Cry2Ab, which is widely deployed in transgenic crops, between laboratory- and field-selected populations of the pink bollworm (Pectinophora gossypiella), a global pest of cotton. We discovered that resistance to Cry2Ab is associated with mutations disrupting the same ATP-binding cassette transporter gene (PgABCA2) in a laboratory-selected strain from Arizona, USA, and in field-selected populations from India. The most common mutation, loss of exon 6 caused by alternative splicing, occurred in resistant larvae from both locations. Together with previous data, the results imply that mutations in the same gene confer Bt resistance in laboratory- and field-selected strains and suggest that focusing on ABCA2 genes may help to accelerate progress in monitoring and managing resistance to Cry2Ab.


September 22, 2019  |  

Candidatus Dactylopiibacterium carminicum, a nitrogen-fixing symbiont of Dactylopius cochineal insects (Hemiptera: Coccoidea: Dactylopiidae)

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500?years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6?Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.


September 22, 2019  |  

Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration.

Studies on antibiotic production wastewater have shown that even a single antibiotic can select for multidrug resistant bacteria in aquatic environments. It is speculated that plasmids are an important mechanism of multidrug resistance (MDR) under high concentrations of antibiotics. Herein, two metagenomic libraries were constructed with plasmid DNA extracted from cultivable microbial communities in a biological wastewater treatment reactor supplemented with 0 (CONTROL) or 25 mg/L of oxytetracycline (OTC-25). The OTC-25 plasmidome reads were assigned to 72 antibiotic resistance genes (ARGs) conferring resistance to 13 types of antibiotics. Dominant ARGs, encoding resistance to tetracycline, aminoglycoside, sulfonamide, and multidrug resistance genes, were enriched in the plasmidome under 25 mg/L of oxytetracycline. Furthermore, 17 contiguous multiple-ARG carrying contigs (carrying =?2 ARGs) were discovered in the OTC-25 plasmidome, whereas only nine were found in the CONTROL. Mapping of the OTC-25 plasmidome reads to completely sequenced plasmids revealed that the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas caviae, carrying multidrug resistance transporter (pecM), tetracycline resistance genes (tetA, tetR), and transposase genes, might be a potential prevalent resistant plasmid in the OTC-25 plasmidome. Additionally, two novel resistant plasmids (containing contig C301682 carrying multidrug resistant operon mexCD-oprJ and contig C301632 carrying the tet36 and transposases genes) might also be potential prevalent resistant plasmids in the OTC-25 plasmidome. This study will be helpful to better understand the role of plasmids in the development of MDR in water environments under high antibiotic concentrations.


September 22, 2019  |  

The genomic and functional landscapes of developmental plasticity in the American cockroach.

Many cockroach species have adapted to urban environments, and some have been serious pests of public health in the tropics and subtropics. Here, we present the 3.38-Gb genome and a consensus gene set of the American cockroach, Periplaneta americana. We report insights from both genomic and functional investigations into the underlying basis of its adaptation to urban environments and developmental plasticity. In comparison with other insects, expansions of gene families in P. americana exist for most core gene families likely associated with environmental adaptation, such as chemoreception and detoxification. Multiple pathways regulating metamorphic development are well conserved, and RNAi experiments inform on key roles of 20-hydroxyecdysone, juvenile hormone, insulin, and decapentaplegic signals in regulating plasticity. Our analyses reveal a high level of sequence identity in genes between the American cockroach and two termite species, advancing it as a valuable model to study the evolutionary relationships between cockroaches and termites.


September 22, 2019  |  

Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices.

Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.© 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

Adaptive strategies of Bacillus thuringiensis isolated from acid mine drainage site in Sabah, Malaysia.

The adaptive process in bacteria is driven by specific genetic elements which regulate phenotypic characteristics such as tolerance to high metal ion concentrations and the secretion of protective biofilms. Extreme environments such as those associated with heavy metal pollution and extremes of acidity offer opportunities to study the adaptive mechanisms of microorganisms. This study focused on the genome analysis of Bacillus thuringiensis (Bt MCMY1), a gram positive rod shaped bacterium isolated from an acid mine drainage site in Sabah, Malaysia by using a combination of Single Molecule Real Time DNA Sequencing, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The genome size of Bt MCMY1 was determined to be 5,458,152 bases which was encoded on a single chromosome. Analysis of the genome revealed genes associated with resistance to Copper, Mercury, Arsenic, Cobalt, Zinc, Cadmium and Aluminum. Evidence from SEM and FTIR indicated that the bacterial colonies form distinct films which bear the signature of polyhydroxyalkanoates (PHA) and this finding was supported by the genome data indicating the presence of a genetic pathway associated with the biosynthesis of PHAs. This is the first report of a Bacillus sp. isolated from an acid mine drainage site in Sabah, Malaysia and the genome sequence will provide insights into the manner in which B. thuringiensis adapts to acid mine drainage.


September 22, 2019  |  

The draft genome assembly of Dermatophagoides pteronyssinus supports identification of novel allergen isoforms in Dermatophagoides species.

Background: Dermatophagoides pteronyssinus (DP) and Dermatophagoides farinae (DF) are highly similar disease-asso- ciated mites with frequently overlapping geographic distributions. A draft genome of DP was assembled to identify the candidate allergens in DP that are homologous to those in DF, investigate allergen isoforms, and facilitate comparisons with related Acari. Methods: PacBio and Illumina whole-genome sequencing was performed on DP. Assembly and reconstruction of the genomes were optimized for isoform identification in a heterogeneous population. Bioinformatic analyses of Acari genomes were performed. Results: The predicted size of the DP nuclear genome is 52.5 Mb. A predicted set of 19,368 proteins was identified, including all 19 currently recognized allergens from this species. Orthologs for 12 allergens established for DF were found. The population of DP mites showed a high level of heterozygosity that allowed the identification of 43 new isoforms for both established and candidate allergens in DP including a new isoform for the major allergen Der p 23. Reanalyzing the previous DF data assuming heterozygosity, 14 new allergen isoforms could be identified. Some new isoforms were observed in both species, suggesting that these isoforms predated speciation. The high quality of both genomes allowed an examination of synteny which showed that many allergen orthologs are physically clustered but with species-specific exon/intron structures. Comparative genomic analyses of other Acariformes mites showed that most of the allergen homologs are widely conserved within this Superorder. Conclusions: Candidate allergens in DP were identified to facilitate future serological studies. While DP and DF are highly similar genetically, species-specific allergen isoforms exist to facilitate molecular differentiation.


September 22, 2019  |  

Identification of candidate genes at the Dp-fl locus conferring resistance against the rosy apple aphid Dysaphis plantaginea

The cultivated apple is susceptible to several pests including the rosy apple aphid (RAA; Dysaphis plantaginea Passerini), control of which is mainly based on chemical treatments. A few cases of resistance to aphids have been described in apple germplasm resources, laying the basis for the development of new resistant cultivars by breeding. The cultivar ‘Florina’ is resistant to RAA, and recently, the Dp-fl locus responsible for its resistance was mapped on linkage group 8 of the apple genome. In this paper, a chromosome walking approach was performed by using a ‘Florina’ bacterial artificial chromosome (BAC) library. The walking started from the available tightly linked molecular markers flanking the resistance region. Various walking steps were performed in order to identify the minimum tiling path of BAC clones covering the Dp-fl region from both the “resistant” and “susceptible” chromosomes of ‘Florina’. A genomic region of about 279 Kb encompassing the Dp-fl resistance locus was fully sequenced by the PacBio technology. Through the development of new polymorphic markers, the mapping interval around the resistance locus was narrowed down to a physical region of 95 Kb. The annotation of this sequence resulted in the identification of four candidate genes putatively involved in the RAA resistance response.


September 22, 2019  |  

The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.

We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest,Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families revealT. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, andT. nisiRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. TheT. nigenome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo.© 2018, Fu et al.


September 22, 2019  |  

By land, air, and sea: hemipteran diversity through the genomic lens

Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits genomic representation across subterranean, terrestrial, and aquatic habitats, and with lineage-specific and developmentally plastic cases of both wing polyphenisms and flightlessness. In this review, we highlight opportunities for taxonomic sampling beyond obvious pest species candidates, motivated by intriguing biological features of certain groups as well as the rich research tradition of ecological, physiological, developmental, and particularly cytogenetic investigation that spans the diversity of the Hemiptera.


September 22, 2019  |  

Genotype assembly, biological activity and adaptation of spatially separated isolates of Spodoptera litura nucleopolyhedrovirus.

The cotton leafworm Spodoptera litura is a polyphagous insect. It has recently made a comeback as a primary insect pest of cotton in Pakistan due to reductions in pesticide use on the advent of genetically modified cotton, resistant to Helicoverpa armigera. Spodoptera litura nucleopolyhedrovirus (SpltNPV) infects S. litura and is recognized as a potential candidate to control this insect. Twenty-two NPV isolates were collected from S. litura from different agro-ecological zones (with collection sites up to 600?km apart) and cropping systems in Pakistan to see whether there is spatial dispersal and adaptation of the virus and/or adaptation to crops. Therefore, the genetic make-up and biological activity of these isolates was measured. Among the SpltNPV isolates tested for speed of kill in 3rd instar larvae of S. litura, TAX1, SFD1, SFD2 and GRW1 were significantly faster killing isolates than other Pakistani isolates. Restriction fragment length analysis of the DNA showed that the Pakistan SpltNPV isolates are all variants of a single SpltNPV biotype. The isolates could be grouped into three genogroups (A-C). The speed of kill of genogroup A viruses was higher than in group C according to a Cox’ proportional hazards analysis. Sequence analysis showed that the Pakistan SpltNPV isolates are more closely related to each other than to the SpltNPV type species G2 (Pang et al., 2001). This suggests a single introduction of SpltNPV into Pakistan. The SpltNPV-PAK isolates are distinct from Spodoptera littoralis nucleopolyhedrovirus. There was a strong correlation between geographic spread and the genetic variation of SpltNPV, and a marginally significant correlation between the latter and the cropping system. The faster killing isolates may be good candidates for biological control of S. litura in Pakistan. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation.

The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome.The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads.The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.


September 22, 2019  |  

Cross-species comparison of the gut: Differential gene expression sheds light on biological differences in closely related tenebrionids.

The gut is one of the primary interfaces between an insect and its environment. Understanding gene expression profiles in the insect gut can provide insight into interactions with the environment as well as identify potential control methods for pests. We compared the expression profiles of transcripts from the gut of larval stages of two coleopteran insects, Tenebrio molitor and Tribolium castaneum. These tenebrionids have different life cycles, varying in the duration and number of larval instars. T. castaneum has a sequenced genome and has been a model for coleopterans, and we recently obtained a draft genome for T. molitor. We assembled gut transcriptome reads from each insect to their respective genomes and filtered mapped reads to RPKM>1, yielding 11,521 and 17,871 genes in the T. castaneum and T. molitor datasets, respectively. There were identical GO terms in each dataset, and enrichment analyses also identified shared GO terms. From these datasets, we compiled an ortholog list of 6907 genes; 45% of the total assembled reads from T. castaneum were found in the top 25 orthologs, but only 27% of assembled reads were found in the top 25 T. molitor orthologs. There were 2281 genes unique to T. castaneum, and 2088 predicted genes unique to T. molitor, although improvements to the T. molitor genome will likely reduce these numbers as more orthologs are identified. We highlight a few unique genes in T. castaneum or T. molitor that may relate to distinct biological functions. A large number of putative genes expressed in the larval gut with uncharacterized functions (36 and 68% from T. castaneum and T. molitor, respectively) support the need for further research. These data are the first step in building a comprehensive understanding of the physiology of the gut in tenebrionid insects, illustrating commonalities and differences that may be related to speciation and environmental adaptation. Published by Elsevier Ltd.


September 22, 2019  |  

RTS,S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally.

The RTS,S/AS01 malaria vaccine encompasses the central repeats and C-terminal of Plasmodium falciparum circumsporozoite protein (PfCSP). Although no Phase II clinical trial studies observed evidence of strain-specific immunity, recent studies show a decrease in vaccine efficacy against non-vaccine strain parasites. In light of goals to reduce malaria morbidity, anticipating the effectiveness of RTS,S/AS01 is critical to planning widespread vaccine introduction. We deep sequenced C-terminal Pfcsp from 77 individuals living along the international border in Luapula Province, Zambia and Haut-Katanga Province, the Democratic Republic of the Congo (DRC) and compared translated amino acid haplotypes to the 3D7 vaccine strain. Only 5.2% of the 193 PfCSP sequences from the Zambia-DRC border region matched 3D7 at all 84 amino acids. To further contextualize the genetic diversity sampled in this study with global PfCSP diversity, we analyzed an additional 3,809 Pfcsp sequences from the Pf3k database and constructed a haplotype network representing 15 countries from Africa and Asia. The diversity observed in our samples was similar to the diversity observed in the global haplotype network. These observations underscore the need for additional research assessing genetic diversity in P. falciparum and the impact of PfCSP diversity on RTS,S/AS01 efficacy.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.