Menu
September 22, 2019

Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF.

Bacillus velezensis 157 was isolated from the bark of Eucommia ulmoides, and exhibited antagonistic activity against a broad spectrum of pathogenic bacteria and fungi. Moreover, B. velezensis 157 also showed various lignocellulolytic activities including cellulase, xylanase, a-amylase, and pectinase, which had the ability of using the agro-industrial waste (soybean meal, wheat bran, sugarcane bagasse, wheat straw, rice husk, maize flour and maize straw) under solid-state fermentation and obtained several industrially valuable enzymes. Soybean meal appeared to be the most efficient substrate for the single fermentation of B. velezensis 157. Highest yield of pectinase (19.15 ± 2.66 U g-1), cellulase (46.69 ± 1.19 U g-1) and amylase (2097.18 ± 15.28 U g-1) was achieved on untreated soybean meal. Highest yield of xylanase (22.35 ± 2.24 U g-1) was obtained on untreated wheat bran. Here, we report the complete genome sequence of the B. velezensis 157, composed of a circular 4,013,317 bp chromosome with 3789 coding genes and a G + C content of 46.41%, one circular 8439 bp plasmid and a G + C content of 40.32%. The genome contained a total of 8 candidate gene clusters (bacillaene, difficidin, macrolactin, butirosin, bacillibactin, bacilysin, fengycin and surfactin), and dedicates over 15.8% of the whole genome to synthesize secondary metabolite biosynthesis. In addition, the genes encoding enzymes involved in degradation of cellulose, xylan, lignin, starch, mannan, galactoside and arabinan were found in the B. velezensis 157 genome. Thus, the study of B. velezensis 157 broadened that B. velezensis can not only be used as biocontrol agents, but also has potentially a wide range of applications in lignocellulosic biomass conversion.


September 22, 2019

Cultivation-independent and cultivation-dependent analysis of microbes in the shallow-sea hydrothermal system off Kueishantao island, Taiwan: Unmasking heterotrophic bacterial diversity and functional capacity.

Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile genetic potential to adapt to the unique environmental conditions.


September 22, 2019

Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve.

Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastro-intestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species.


September 22, 2019

Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area.

Polybrominated diphenyl ethers (PBDEs) have become widespread environmental pollutants all over the world. A newly isolated bacterium from an e-waste recycling area, Stenotrophomonas sp. strain WZN-1, can degrade decabromodiphenyl ether (BDE 209) effectively under aerobic conditions. Orthogonal test results showed that the optimum conditions for BDE 209 biodegradation were pH 5, 25 °C, 0.5% salinity, 150 mL minimal salt medium volume. Under the optimized condition, strain WZN-1 could degrade 55.15% of 65 µg/L BDE 209 under aerobic condition within 30 day incubation. Moreover, BDE 209 degradation kinetics was fitted to a first-order kinetics model. The biodegradation mechanism of BDE 209 by strain WZN-1 were supposed to be three possible metabolic pathways: debromination, hydroxylation, and ring opening processes. Four BDE 209 degradation genes, including one hydrolase, one dioxygenase and two dehalogenases, were identified based on the complete genome sequencing of strain WZN-1. The real-time qPCR demonstrated that the expression level of four identified genes were significantly induced by BDE 209, and they played an important role in the degradation process. This study is the first to demonstrate that the newly isolated Stenotrophomonas strain has an efficient BDE 209 degradation ability and would provide new insights for the microbial degradation of PBDEs.


September 22, 2019

Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production.

Chinese rice wine is a popular traditional alcoholic beverage in China, while its brewing processes have rarely been explored. We herein report the first gapless, near-finished genome sequence of the yeast strain Saccharomyces cerevisiae N85 for Chinese rice wine production. Several assembly methods were used to integrate Pacific Bioscience (PacBio) and Illumina sequencing data to achieve high-quality genome sequencing of the strain. The genome encodes more than 6,000 predicted proteins, and 238 long non-coding RNAs, which are validated by RNA-sequencing data. Moreover, our annotation predicts 171 novel genes that are not present in the reference S288c genome. We also identified 65,902 single nucleotide polymorphisms and small indels, many of which are located within genic regions. Dozens of larger copy-number variations and translocations were detected, mainly enriched in the subtelomeres, suggesting these regions may be related to genomic evolution. This study will serve as a milestone in studying of Chinese rice wine and related beverages in China and in other countries. It will help to develop more scientific and modern fermentation processes of Chinese rice wine, and explore metabolism pathways of desired and harmful components in Chinese rice wine to improve its taste and nutritional value.© The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


September 22, 2019

Complete genome sequence and genomic characterization of Lactobacillus acidophilus LA1 (11869BP).

Our body has natural defense systems to protect against potentially harmful microbes, including the physical and chemical barriers of the intestinal epithelium (Corfield et al., 2000). The physical barrier of the intestinal epithelium protects the host against pathogenic microbes (Anderson et al., 1993), and the intestinal mucosa coated with mucus excretes pathogens from the intestinal tract (Corfield et al., 2000).


September 22, 2019

Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces.

A total of 22 Lactobacillus strains, which were isolated from infant feces were evaluated for their probiotic potential along with resistance to low pH and bile salts. Eight isolates (L. reuteri 3M02 and 3M03, L. gasseri 4M13, 4R22, 5R01, 5R02, and 5R13, and L. rhamnosus 4B15) with high tolerance to acid and bile salts, and ability to adhere to the intestine were screened from 22 strains. Further, functional properties of 8 Lactobacillus strains, such as anti-oxidation, inhibition of a-glucosidase activity, cholesterol-lowering, and anti-inflammation were evaluated. The properties were strain-specific. Particularly, two strains of L. rhamnosus, 4B15 (4B15) and L. gasseri 4M13 (4M13) showed considerably higher anti-oxidation, inhibition of a-glucosidase activity, and cholesterol-lowering, and greater inhibition of nitric oxide production than other strains. Moreover, the two selected strains substantially inhibited the release of inflammatory mediators such as TNF-a, IL-6, IL-1ß, and IL-10 stimulated the treatment of RAW 264.7 macrophages with LPS. In addition, whole genome sequencing and comparative genomic analysis of 4B15 and 4M13 indicated them as novel genomic strains. These results suggested that 4B15 and 4M13 showed the highest probiotic potential and have an impact on immune health by modulating pro-inflammatory cytokines.


September 22, 2019

Biosynthesis of antibiotic chuangxinmycin from Actinoplanes tsinanensis.

Chuangxinmycin is an antibiotic isolated from Actinoplanes tsinanensis CPCC 200056 in the 1970s with a novel indole-dihydrothiopyran heterocyclic skeleton. Chuangxinmycin showed in vitro antibacterial activity and in vivo efficacy in mouse infection models as well as preliminary clinical trials. But the biosynthetic pathway of chuangxinmycin has been obscure since its discovery. Herein, we report the identification of a stretch of DNA from the genome of A. tsinanensis CPCC 200056 that encodes genes for biosynthesis of chuangxinmycin by bioinformatics analysis. The designated cxn cluster was then confirmed to be responsible for chuangxinmycin biosynthesis by direct cloning and heterologous expressing in Streptomyces coelicolor M1146. The cytochrome P450 CxnD was verified to be involved in the dihydrothiopyran ring closure reaction by the identification of seco-chuangxinmycin in S. coelicolor M1146 harboring the cxn gene cluster with an inactivated cxnD. Based on these results, a plausible biosynthetic pathway for chuangxinmycin biosynthesis was proposed, by hijacking the primary sulfur transfer system for sulfur incorporation. The identification of the biosynthetic gene cluster of chuangxinmycin paves the way for elucidating the detail biochemical machinery for chuangxinmycin biosynthesis, and provides the basis for the generation of novel chuangxinmycin derivatives by means of combinatorial biosynthesis and synthetic biology.


September 22, 2019

Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides.

The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.


September 22, 2019

A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering.

Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.© 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.


September 22, 2019

Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress.

Oxidative stresses commonly exist in natural environments, and microbes have developed a variety of defensive systems to counteract such events. Although increasing evidence has shown that high hydrostatic pressure (HHP) and low temperature (LT) induce antioxidant defense responses in cells, there is no direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT. In this study, using the wild-type (WT) strain of a deep-sea bacterium, Shewanella piezotolerans WP3, as an ancestor, we obtained a mutant, OE100, with an enhanced antioxidant defense capacity by experimental evolution under H2O2 stress. Notably, OE100 exhibited better tolerance not only to H2O2 stress but also to HHP and LT (20 MPa and 4°C, respectively). Whole-genome sequencing identified a deletion mutation in the oxyR gene, which encodes the transcription factor that controls the oxidative stress response. Comparative transcriptome analysis showed that the genes associated with oxidative stress defense, anaerobic respiration, DNA repair, and the synthesis of flagella and bacteriophage were differentially expressed in OE100 compared with the WT at 20 MPa and 4°C. Genetic analysis of oxyR and ccpA2 indicated that the OxyR-regulated cytochrome c peroxidase CcpA2 significantly contributed to the adaptation of WP3 to HHP and LT. Taken together, these results confirmed the inherent relationship between antioxidant defense mechanisms and the adaptation of a benthic microorganism to HHP and LT.IMPORTANCE Oxidative stress exists in various niches, including the deep-sea ecosystem, which is an extreme environment with conditions of HHP and predominantly LT. Although previous studies have shown that HHP and LT induce antioxidant defense responses in cells, direct evidence to prove the connection between antioxidant defense mechanisms and the adaptation of bacteria to HHP and LT is lacking. In this work, using the deep-sea bacterium Shewanella piezotolerans WP3 as a model, we proved that enhancement of the adaptability of WP3 to HHP and LT can benefit from its antioxidant defense mechanism, which provided useful insight into the ecological roles of antioxidant genes in a benthic microorganism and contributed to an improved understanding of microbial adaptation strategies in deep-sea environments.


September 22, 2019

Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3.

Phthalic acid esters (PAEs) are a group of recalcitrant and hazardous organic compounds that pose a great threat to both ecosystem and human beings. A novel endophytic strain YJB3 that could utilize a wide range of PAEs as the sole carbon and energy sources for cell growth was isolated from Canna indica root tissue. It was identified as Bacillus megaterium based on morphological characteristics and 16S rDNA sequence homology analysis. The degradation capability of the strain YJB3 was investigated by incubation in mineral salt medium containing di-n-butyl-phthalate (DBP), one of important PAEs under different environmental conditions, showing 82.5% of the DBP removal in 5days of incubation under the optimum conditions (acetate 1.2g·L-1, inocula 1.8%, and temperature 34.2°C) achieved by two-step sequential optimization technologies. The DBP metabolites including mono-butyl phthalate (MBP), phthalic acid (PA), protocatechuic acid (PCA), etc. were determined by GC-MS. The PCA catabolic genes responsible for the aromatic ring cleavage of PCA in the strain YJB3 were excavated by whole-genome sequencing. Thus, a degradation pathway of DBP by the strain YJB3 was proposed that MBP was formed, followed by PA, and then the intermediates were further utilized till complete degradation. To our knowledge, this is the first study to show the biodegradation of PAEs using endophyte. The results in the present study suggest that the strain YJB3 is greatly promising to act as a competent inoculum in removal of PAEs in both soils and crops. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019

Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality

The cultivation of Panax plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities; these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem.


September 22, 2019

Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris.

Pichia pastoris (syn. Komagataella phaffii) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae, where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (<10%) harboring ectopically integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs).IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast Saccharomyces cerevisiae, expression cassettes carrying foreign genes integrate highly specifically at the targeted sites in the genome. In contrast, cassettes often integrate at random genomic positions in nonconventional yeasts, such as Pichia pastoris (syn. Komagataella phaffii). Hence, cells from the same transformation event often behave differently, with significant clonal variation necessitating the screening of large numbers of strains. The importance of this study is that we systematically investigated the influence of integration events in more than 700 strains. Our findings provide novel insight into clonal variation in P. pastoris and, thus, how to avoid pitfalls and obtain reliable results. The underlying mechanisms may also play a role in other yeasts and hence could be generally relevant for recombinant yeast protein production strains. Copyright © 2018 American Society for Microbiology.


September 22, 2019

Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in Streptomyces sp. strain fd1-xmd.

The genus Streptomyces have been highly regarded for their important source of natural products. Combined with the technology of genome sequencing and mining, we could identify the active ingredients from fermentation broth quickly. Here, we report on Streptomyces sp. strain fd1-xmd, which was isolated from a soil sample collected in Shanghai. Interestingly, the fermentation broth derived from this strain demonstrated broad-spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and eukaryotes. To identify the antimicrobial substances and their biosynthetic gene clusters, we sequenced the fd1-xmd strain and obtained a genome 7,929,999 bp in length. The average GC content of the chromosome was 72.5 mol%. Knockout experiments demonstrated that out of eight biosynthetic gene clusters we could identify, two are responsible for the biosynthesis of the antibiotics streptothricin (ST) and tunicamycin (TM). The ST biosynthetic gene cluster from fd1-xmd was verified via successful heterologous expression in Streptomyces coelicolor M1146. ST production had a yield of up to 0.5 g/L after the optimization of culture conditions. This study describes a novel producer of ST and TM and outlines the complete process undertaken for Streptomyces sp. strain fd1-xmd genome mining.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.