Menu
July 7, 2019

Complete genome sequences of two methicillin-sensitive Staphylococcus aureus isolates representing a population subset highly prevalent in human colonization.

Here, we report the high-quality draft genome sequences of two methicillin-susceptible Staphylococcus aureus isolates, 08-02119 and 08-02300. Belonging to sequence type 582 (ST582) and ST7, both isolates are representatives of clonal lineages often associated with asymptomatic colonization of humans. Copyright © 2016 Weber et al.


July 7, 2019

Interspecies dissemination of a mobilizable plasmid harboring blaIMP-19: the possibility of horizontal gene transfer in a single patient.

Carbapenemase-producing Gram-negative bacilli have been a global concern over the past 2 decades because these organisms can cause severe infections with high mortality rates. Carbapenemase genes are often carried by mobile genetic elements, and resistance plasmids can be transferred through conjugation. We conducted whole-genome sequencing (WGS) to demonstrate that the same plasmid harboring a metallo-ß-lactamase gene was detected in two different species isolated from a single patient. Metallo-ß-lactamase-producing Achromobacter xylosoxidans (KUN4507), non-metallo-ß-lactamase-producing Klebsiella pneumoniae (KUN4843), and metallo-ß-lactamase-producing K. pneumoniae (KUN5033) were sequentially isolated from a single patient and then analyzed in this study. Antimicrobial susceptibility testing, molecular typing (pulsed-field gel electrophoresis and multilocus sequence typing), and conjugation analyses were performed by conventional methods. Phylogenetic and molecular clock analysis of K. pneumoniae isolates were performed with WGS, and the nucleotide sequences of plasmids detected from these isolates were determined using WGS. Conventional molecular typing revealed that KUN4843 and KUN5033 were identical, whereas the phylogenetic tree analysis revealed a slight difference. These two isolates were separated from the most recent common ancestor 0.74 years before they were isolated. The same resistance plasmid harboring blaIMP-19 was detected in metallo-ß-lactamase-producing A. xylosoxidans and K. pneumoniae Although this plasmid was not self-transferable, the conjugation of this plasmid from A. xylosoxidans to non-metallo-ß-lactamase-producing K. pneumoniae was successfully performed. The susceptibility patterns for metallo-ß-lactamase-producing K. pneumoniae and the transconjugant were similar. These findings supported the possibility of the horizontal transfer of plasmid-borne blaIMP-19 from A. xylosoxidans to K. pneumoniae in a single patient.


July 7, 2019

Whole-genome sequence of multidrug-resistant Pseudomonas aeruginosa strain BAMCPA07-48, isolated from a combat injury wound.

We report here the complete genome sequence of Pseudomonas aeruginosa strain BAMCPA07-48, isolated from a combat injury wound. The closed genome sequence of this isolate is a valuable resource for pathogenome characterization of P. aeruginosa associated with wounds, which will aid in the development of a higher-resolution phylogenomic framework for molecular-guided pathogen-surveillance. Copyright © 2016 Sanjar et al.


July 7, 2019

Vibrio anguillarum is genetically and phenotypically unaffected by long-term continuous exposure to the antibacterial compound tropodithietic acid.

Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any potential side effects of long-term exposure of the pathogen to the probionts or any compounds they produce. Here we exposed the fish pathogen Vibrio anguillarum to TDA for several hundred generations in an adaptive evolution experiment. No tolerance or resistance arose during the 90 days of exposure, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None of the virulence genes of V. anguillarum was affected, and infectivity assays using fish cell lines indicated that the TDA-exposed lineages and clones were less invasive than the wild-type strain. Thus, long-term TDA exposure does not appear to result in TDA resistance and the physiology of V. anguillarum appears unaffected, supporting the application of TDA-producing roseobacters as probiotics in aquaculture.It is important to limit the use of antibiotics in our food production, to reduce the risk of bacteria developing antibiotic resistance. We showed previously that marine bacteria of the Roseobacter clade can prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish pathogen. Therefore, we exposed the fish pathogen Vibrio anguillarum to increasing TDA concentrations over 3 months. We did not see the development of any resistance to TDA, and subsequent infection assays revealed that none of the TDA-exposed clones had increased virulence toward fish cells. Hence, this study supports the use of roseobacters as a non-risk-based disease control measure in aquaculture. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Complete genome sequence of the hyperthermophilic and piezophilic archeon Thermococcus Piezophilus CDGST, able to grow under extreme hydrostatic pressures

We report the genome sequence of Thermococcus superprofundus strain CDGS(T), a new piezophilic and hyperthermophilic member of the order Thermococcales isolated from the world’s deepest hydrothermal vents, at the Mid-Cayman Rise. The genome is consistent with a heterotrophic, anaerobic, and piezophilic lifestyle. Copyright © 2016 Dalmasso et al.


July 7, 2019

Complete genome sequences of three outbreak-associated Legionella pneumophila isolates.

We report here the complete genome sequences of three Legionella pneumophila isolates that are associated with a Legionnaires’ disease outbreak in New York in 2012. Two clinical isolates (D7630 and D7632) and one environmental isolate (D7631) were recovered from this outbreak. A single isolate-specific virulence gene was found in D7632. These isolates were included in a large study evaluating the genomic resolution of various bioinformatics approaches for L. pneumophila serogroup 1 isolates. Copyright © 2016 Morrison et al.


July 7, 2019

Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil.

Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.


July 7, 2019

The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization.

Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, quality-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic, genetic and reference genome characteristics of the 2016 WHO gonococcal reference strains intended for quality assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide.The 2016 WHO reference strains (n?=?14) constitute the eight 2008 WHO reference strains and six novel strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n?=?23), serovar, prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing.The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished references genomes (n?=?14) were presented.The 2016 WHO gonococcal reference strains are intended for internal and external quality assurance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection, molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis, transcriptomics, proteomics and other molecular technologies and data analysis.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Challenges, solutions, and quality metrics of personal genome assembly in advancing precision medicine.

Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune-response, tailoring drug therapy and detecting tumors. We believe the precision medicine would largely benefit from bioinformatics solutions, particularly for personal genome assembly.


July 7, 2019

Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen.

Genomic plasticity enables adaptation to changing environments, which is especially relevant for pathogens that engage in “arms races” with their hosts. In many pathogens, genes mediating virulence cluster in highly variable, transposon-rich, physically distinct genomic compartments. However, understanding of the evolution of these compartments, and the role of transposons therein, remains limited. Here, we show that transposons are the major driving force for adaptive genome evolution in the fungal plant pathogen Verticillium dahliae We show that highly variable lineage-specific (LS) regions evolved by genomic rearrangements that are mediated by erroneous double-strand repair, often utilizing transposons. We furthermore show that recent genetic duplications are enhanced in LS regions, against an older episode of duplication events. Finally, LS regions are enriched in active transposons, which contribute to local genome plasticity. Thus, we provide evidence for genome shaping by transposons, both in an active and passive manner, which impacts the evolution of pathogen virulence. © 2016 Faino et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019

The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads.

Sugarcane accounts for a large portion of the worlds sugar production. Modern commercial cultivars are complex hybrids of S. officinarum and several other Saccharum species. Historical records identify New Guinea as the origin of S. officinarum and that a small number of plants originating from there were used to generate all modern commercial cultivars. The mitochondrial genome can be a useful way to identify the maternal origin of commercial cultivars. We have used the PacBio RSII to sequence and assemble the mitochondrial genome of a South East Asian commercial cultivar, known as Khon Kaen 3. The long read length of this sequencing technology allowed for the mitochondrial genome to be assembled into two distinct circular chromosomes with all repeat sequences spanned by individual reads. Comparison of five commercial hybrids, two S. officinarum and one S. spontaneum to our assembly reveals no structural rearrangements between our assembly, the commercial hybrids and an S. officinarum from New Guinea. The S. spontaneum, from India, and one sample of S. officinarum (unknown origin) are substantially rearranged and have a large number of homozygous variants. This supports the record that S. officinarum plants from New Guinea are the maternal source of all modern commercial hybrids.


July 7, 2019

The complete chloroplast genome sequence of the medicinal plant Swertia mussotii using the PacBio RS II platform.

Swertia mussotii is an important medicinal plant that has great economic and medicinal value and is found on the Qinghai Tibetan Plateau. The complete chloroplast (cp) genome of S. mussotii is 153,431 bp in size, with a pair of inverted repeat (IR) regions of 25,761 bp each that separate an large single-copy (LSC) region of 83,567 bp and an a small single-copy (SSC) region of 18,342 bp. The S. mussotii cp genome encodes 84 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. The identity, number, and GC content of S. mussotii cp genes were similar to those in the genomes of other Gentianales species. Via analysis of the repeat structure, 11 forward repeats, eight palindromic repeats, and one reverse repeat were detected in the S. mussotii cp genome. There are 45 SSRs in the S. mussotii cp genome, the majority of which are mononucleotides found in all other Gentianales species. An entire cp genome comparison study of S. mussotii and two other species in Gentianaceae was conducted. The complete cp genome sequence provides intragenic information for the cp genetic engineering of this medicinal plant.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.