Menu
July 7, 2019  |  

Complete genome sequence of the Robinia pseudoacacia L. symbiont Mesorhizobium amorphae CCNWGS0123.

Mesorhizobium amorphae CCNWGS0123 was isolated in 2006, from effective nodules of Robinia pseudoacacia L. grown in lead-zinc mine tailing site, in Gansu Province, China. M. amorphae CCNWGS0123 is an aerobic, Gram-negative, non-spore-forming rod strain. This paper characterized M. amorphae CCNWGS0123 and presents its complete genome sequence information and genome annotation. The 7,374,589 bp long genome which encodes 7136 protein-coding genes and 63 RNA coding genes, contains one chromosome and four plasmids. Moreover, a chromosome with no gaps was assembled.


July 7, 2019  |  

PGD: Pineapple Genomics Database.

Pineapple occupies an important phylogenetic position as its reference genome is a model for studying the evolution the Bromeliaceae family and the crassulacean acid metabolism (CAM) photosynthesis. Here, we developed a pineapple genomics database (PGD, http://pineapple.angiosperms.org/pineapple/html/index.html) as a central online platform for storing and integrating genomic, transcriptomic, function annotation and genetic marker data for pineapple (Ananas comosus (L.) Merr.). The PGD currently hosts significant search tools and available datasets for researchers to study comparative genomics, gene expression, gene co-expression molecular marker, and gene annotation of A. comosus (L). PGD also performed a series of additional pages for a genomic browser that visualizes genomic data interactively, bulk data download, a detailed user manual, and data integration information. PGD was developed with the capacity to integrate future data resources, and will be used as a long-term and open access database to facilitate the study of the biology, distribution, and the evolution of pineapple and the relative plant species. An email-based helpdesk is also available to offer support with the website and requests of specific datasets from the research community.


July 7, 2019  |  

Complete genome sequence of soil actinobacteria Streptomyces cavourensis TJ430.

A new actinobacteria Streptomyces cavourensis TJ430 was isolated from the mountain soil collected from the southwest of China. In previous study, TJ430 showed striking bactericidal activities and strong ability of antibiotic production. Here, we report complete genome of this bacterium, consisting of 7.6?Mb linear chromosome and 0.2?Mb plasmids. It was predicted 6450 genes in chromosome and 225 genes in plasmids, as well as 12 gene islands in chromosome. Abundant genes have predicted functions in antibiotic metabolism and stress resistance. A whole-genome comparison of S. cavourensis TJ430, S. coelicolor A3(2), and S. lividans 66 indicates that TJ430 has a relatively high degree of strain specificity. The 16S rRNA phylogenetic tree shows the high identities (99.79%) of TJ430 with S. cavourensis DSM40300. TJ430 is a new and rare Streptomyces species, and analysis of its genome helps us to better understand primary metabolism mechanism of this isolate, as well as the evolutionary biology.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

Near-complete genome sequence of Ralstonia solanacearum T523, a phylotype I tomato phytopathogen isolated from the Philippines.

Ralstonia solanacearum strain T523 is the major phytopathogen causing tomato bacterial wilt in the Philippines. Here, we report the complete chromosome and draft megaplasmid genomes with predicted gene inventories supporting rhizo- sphere processes, extensive plant virulence effectors, and the production of bioac- tive signaling metabolites, such as ralstonin, micacocidin, and homoserine lactone.


July 7, 2019  |  

Fe-S cluster assembly in oxymonads and related protists.

The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe-S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe-S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe-S proteins.


July 7, 2019  |  

Genomic features of the Helicobacter pylori strain PMSS1 and its virulence attributes as deduced from its in vivo colonisation patterns.

The human gastric pathogen Helicobacter pylori occurs in two basic variants, either exhibiting a functional cagPAI-encoded type-4-secretion-system (T4SS) or not. Only a few cagPAI-positive strains have been successfully adapted for long-term infection of mice, including the pre-mouse Sydney strain 1 (PMSS1). Here we confirm that PMSS1 induces gastric inflammation and neutrophil infiltration in mice, progressing to intestinal metaplasia. Complete genome analysis of PMSS1 revealed 1,423 coding sequences, encompassing the cagPAI gene cluster and, unusually, the location of the cytotoxin-associated gene A (cagA) approximately 15 kb downstream of the island. PMSS1 harbours three genetically exchangeable loci that are occupied by the hopQ coding sequences. HopQ represents a critical co-factor required for the translocation of CagA into the host cell and activation of NF-?B via the T4SS. Long-term colonisation of mice led to an impairment of cagPAI functionality. One of the bacterial clones re-isolated at four months post-infection revealed a mutation in the cagPAI gene cagW, resulting in a frame shift mutation, which prevented CagA translocation, possibly due to an impairment of T4SS function. Rescue of the mutant cagW re-established CagA translocation. Our data reveal intriguing insights into the adaptive abilities of PMSS1, suggesting functional modulation of the H. pylori cagPAI virulence attribute.© 2018 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.


July 7, 2019  |  

Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies.

Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019  |  

The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi.

The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.


July 7, 2019  |  

Synaptogyrin-2 influences replication of Porcine circovirus 2.

Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (>24 hpi) and supernatant (>48hpi)(P < 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load.


July 7, 2019  |  

Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment.

Here, we report a case of severe infection caused by Escherichia coli that harbored mcr-1, blaNDM-5, and acquired resistance to tigecycline during tigecycline salvage therapy.Antimicrobial susceptibility testing, Southern blot hybridization, and complete genome sequence of the strains were carried out. The genetic characteristics of the mcr-1 and blaNDM-5 plasmids were analyzed. The whole genome sequencing of mcr-1-containing plasmid was completed. Finally, putative single nucleotide polymorphisms and deletion mutations in the tigecycline-resistant strain were predicted.Three E. coli isolates were obtained from ascites, pleural effusion, and stool of a patient; they were resistant to almost all the tested antibiotics. The first two strains separated from ascites (E-FQ) and hydrothorax (E-XS) were susceptible to amikacin and tigecycline; however, the third strain from stool (E-DB) was resistant to tigecycline after nearly 3 weeks’ treatment with tigecycline. All three isolates possessed both mcr-1 and blaNDM-5. The blaNDM-5 gene was found on the IncX3 plasmid, whereas the mcr-1, fosA3 and blaCTX-M-14 were located on the IncHI2 plasmid. Mutations in acrB and lon were the reason for the resistance to tigecycline.This is the first report of a colistin-, carbapenem-, and tigecycline-resistant E. coli in China. Tigecycline resistance acquired during tigecycline therapy is of great concern for us because tigecycline is a drug of last resort to treat carbapenem-resistant Gram-negative bacterial infections. Furthermore, the transmission of such extensively drug-resistant isolates may pose a great threat to public health.


July 7, 2019  |  

Velez bacillusL-1The pear Botrytis cinerea and Penicillium bacteria of suppression role evaluation and all Genome Analysis

[Objective] Clear Velez bacillus(Bacillus S rDNA Sequence) L-1The pear Botrytis cinerea and Penicillium bacteria of suppression role clear Bacteria L-1Sterile fermentation broth antagonistic activity of stability and may be of Antagonistic mechanism. [Methods] by in vitro determination, living determination and pathogenic bacteria mycelium morphology observation evaluation StrainL-1The pear Botrytis cinerea and Penicillium bacteria of antagonistic activity. To pear Botrytis cinerea bacteria for try pathogenic bacteria use Oxford Cup method determination StrainL-1Sterile fermentation broth antagonistic activity of stability. UsePacbio rsiiThree generations sequencing technology determinationL-1Of all gene sequence will all gene sequence and gene protein sequence databaseBLASTComparison Analysis prediction StrainL-1May be of secondary metabolism product and potential of role mechanism. [Results] The StrainL-1The pear Botrytis cinerea and Penicillium bacteria of living inhibition rate respectively92.88%And77.47%Can caused by pathogenic bacteria mycelium enlargement, deformity. StrainL-1In10% NaClOf culture medium in can still normal growth its sterile fermentation broth high temperature resistant, acid, alkali, UV irradiation and protease degradation on pathogenic bacteria has stability of antagonistic activity. All gene sequence analysis results showed that strainL-1Yes112A Gene Involved in the many kinds of carbon source of metabolism can use many kinds of carbon source the growth; containing involved in spermidine, trehalose and strain stress resistance related compounds synthesis of gene; secondary metabolism prediction results display:L-1Containing SynthesisSurfactin,Fengycin,Bacillibactin,Bacillaene,Macolactin,Difficidin,BacilysinAnd many kinds of peptide chitosan and polyketide sugar resistance compounds of gene cluster and can degradation pathogenic bacteria cell wallß-1,3-Glucanase and chitinase related of gene; in addition StrainL-1Containing generation acetoin and can induced Plant Resistance of gene. [Conclusion] StrainL-1Can effective antagonistic many kinds of pear of after disease resistance strong antagonistic activity stability prediction StrainL-1Can by producing many kinds of antagonistic activity compounds and cell wall hydrolysis enzymes and induced Plant Resistance implementation disease prevention effect has very big of application potential.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.