PacBio SMRT Sequencing has the unique ability to directly detect base modifications in addition to the nucleotide sequence of DNA. Because eukaryotes use base modifications to regulate gene expression, the absence or presence of epigenetic events relative to the location of genes is critical to elucidate the function of the modification. Therefore an integrated approach that combines multiple omic-scale assays is necessary to study complex organisms. Here, we present an integrated analysis of three sequencing experiments: 1) DNA sequencing, 2) base-modification detection, and 3) Iso-seq analysis, in Neurospora crassa, a filamentous fungus that has been used to make many landmark…
Background: Alternative splicing expands the repertoire of gene functions and is a signature for different cell populations. Here we characterize the transcriptome of human bone marrow subpopulations including progenitor cells to understand their contribution to homeostasis and pathological conditions such as atherosclerosis and tumor metastasis. To obtain full-length transcript structures, we utilized long reads in addition to RNA-seq for estimating isoform diversity and abundance. Method: Freshly harvested, viable human bone marrow tissues were extracted from discarded harvesting equipment and separated into total bone marrow (total), lineage-negative (lin-) progenitor cells and differentiated cells (lin+) by magnetic bead sorting with antibodies to…
PacBio’s new Iso-Seq technology allows for rapid generation of full-length cDNA sequences without the need for assembly steps. The technology was tested on leaf mRNA from two model O. sativa ssp. indica cultivars – Minghui 63 and Zhenshan 97. Even though each transcriptome was not exhaustively sequenced, several thousand isoforms described genes over a wide size range, most of which are not present in any currently available FL cDNA collection. In addition, the lack of an assembly requirement provides direct and immediate access to complete mRNA sequences and rapid unraveling of biological novelties.
Lameness is a significant problem resulting in millions of dollars in lost revenue annually. In commercial broilers, the most common cause of lameness is bacterial chondronecrosis with osteomyelitis (BCO). We are using a wire flooring model to induce lameness attributable to BCO. We used 16S ribosomal DNA sequencing to determine that Staphylococcus spp. were the main species associated with BCO. Staphylococcus agnetis, which previously had not been isolated from poultry, was the principal species isolated from the majority of the bone lesion samples. Administering S. agnetis in the drinking water to broilers reared on wire flooring increased the incidence of…
Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read…
We have produced an updated annotation of the Norway spruce genome on the basis of an in siliconormalised set of RNA-Seq data obtained from 1,529 samples and comprising 15.5 billion paired-end Illumina HiSeq reads complemented by 18Mbp of PacBio cDNA data (3.2M sequences). In addition to augmenting and refining the previous protein coding gene annotation, here we focus on the addition of long intergenic non-coding RNA (lincRNA) and micro RNA (miRNA) genes. In addition to non-coding loci, our analyses also identified protein coding genes that had been missed by the initial genome annotation and enabled us to update the annotation…
PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo), Daniel Geraghty (Fred Hutchinson Cancer Center), and Mike Schatz (CSHL)
PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.
In this webinar we present Single Molecule, Real-Time (SMRT) Sequencing and the Iso-Seq method, which allow you to generate full-length cDNA sequences — no assembly required — to characterize transcript isoforms within targeted genes or across an entire transcriptome. The presenters share how the Iso-Seq method: (1) Provides high quality, full-length transcript sequences of up to 15 kb; (2) Allows for one-day library prep on a single SMRT Cell 8M to comprehensively characterize a whole transcriptome; (3) Facilitates discovery of alternative splicing events, fusion gene detection, and allelic specific isoform detection; and (4) Enables discovery of potential cancer-specific isoforms in…
The utility of new highly accurate long reads, or HiFi reads, was first demonstrated for calling all variant types in human genomes. It has since been shown that HiFi reads can be used to generate contiguous, complete, and accurate human genomes, even in repeat structures such as centromeres and telomeres. In this virtual workshop scientists from PacBio as well as Tina Graves-Lindsay from the McDonnell Genome Institute at Washington University share the many improvements we’ve made to HiFi sequencing in the past year, tools that take advantage of HiFi data for variant detection and assembly, and examples in numerous genomics…
In this talk at PAG 2020, PacBio Plant and Animal Sciences Marketing Manager Michelle Vierra discusses recent updates to Single Molecule, Real-Time (SMRT) Sequencing technology, including the Sequel II System, updated protocols for low-input as well as other upcoming developments.
In this webinar, Kristin Mars, Sequencing Specialist, PacBio, presents an introduction to PacBio’s technology and its applications followed by a panel discussion among sequencing experts. The panel discussion addresses such things as what long reads are and how are they useful, what differentiates PacBio long-read sequencing from other technologies, and the applications PacBio offers and how they can benefit scientific research.
In this LabRoots webinar, Jonas Korlach the CSO of PacBio provides an introduction to PacBio HiFi sequence reads, which are both long (up to 25 kb currently) and accurate (>99%) at the individual single-molecule sequence read level andhave allowed for advances in de novo genome assemblies. Korlach reviews the characteristics of HiFi read data obtained with the Sequel II System, followed by examples of high-quality genome assemblies for human, plant and animal genomes including the different aspects of evaluating genome assemblies (contiguity, accuracy, completeness and allelic phasing) and illustrates their high quality by examples of resolving centromeres, telomeres, segmental duplications…
Most genes in eukaryotic organisms produce alternative isoforms, broadening the diversity of proteins and non-coding RNAs encoded by the genome. In contrast to other RNA sequencing platforms that rely on short-read sequencing, long accurate reads from PacBio Single Molecule, Real-Time (SMRT) Sequencing can characterize full-length transcripts without the need for assembly and inference. The PacBio isoform sequencing (Iso-Seq) method generates full-length sequences for transcripts up to 10 kb in length, with scalable throughput using barcoding approaches. The Iso-Seq application can be employed for a wide variety of studies, including improvement of gene annotation, identification of novel isoforms and fusion transcripts,…
The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in…