X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Video Poster: Capture long-read isoform sequencing (Iso-Seq) for uncovering human isoform diversity in the brain and characterizing SARS-CoV2 viral RNAs

Most genes in eukaryotic organisms produce alternative isoforms, broadening the diversity of proteins and non-coding RNAs encoded by the genome. In contrast to other RNA sequencing platforms that rely on short-read sequencing, long accurate reads from PacBio Single Molecule, Real-Time (SMRT) Sequencing can characterize full-length transcripts without the need for assembly and inference. The PacBio isoform sequencing (Iso-Seq) method generates full-length sequences for transcripts up to 10 kb in length, with scalable throughput using barcoding approaches. The Iso-Seq application can be employed for a wide variety of studies, including improvement of gene annotation, identification of novel isoforms and fusion transcripts, and differential isoform expression across tissues and cell types. Long-read sequencing together with hybridization-capture targeting provides a powerful approach to target candidate transcripts of interest using biotinylated capture probes. In addition to the comprehensive isoform characterization that offers for targeted genes, long reads provide other advantages as well. For example, our studies revealed that a customized Alzheimer’s Disease (AD) panel captured cDNA applied to two AD subjects could identify heterozygous variants in the targeted genes, allowing phasing of transcript isoforms and sorting into their respective haplotypes using the IsoPhase pipeline. We will also discuss how we rapidly applied the capture long-read RNA-seq concept in recent SARS-CoV2 viral sequencing efforts. Although PCR is widely used in COVID-19 studies, primer design and PCR conditions are susceptible to sample quality and viral titer, resulting in uneven coverage and dropouts. Here we present an alternative approach with probe-based enrichment and long-read sequencing. Viral transcripts in the RNA sample are reverse transcribed into cDNA just as in the standard Iso-Seq workflow but then a custom panel of IDT xGen Lockdown probes tilling the SARS-CoV-2 viral genome are used for capture. The method affords complete genomic sequence determination, shows more even coverage than traditional RT-PCR, and is robust to RNA quality and quantity. Furthermore, we took advantage of unique molecular indexes (UMIs) to separate founder molecules and detect PCR artifacts during sample preparation. This work provides an orthogonal approach for researchers elucidating the virology of this novel coronavirus and we foresee that this workflow can be easily modified to capture long read sequences for other viruses as well.

 

Stay
Current

Visit our blog »