X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Enigmatic Diphyllatea eukaryotes: culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution.

The class Diphyllatea belongs to a group of enigmatic unicellular eukaryotes that play a key role in reconstructing the morphological innovation and diversification of early eukaryotic evolution. Despite its evolutionary significance, very little is known about the phylogeny and species diversity of Diphyllatea. Only three species have described morphology, being taxonomically divided by flagella number, two or four, and cell size. Currently, one 18S rRNA Diphyllatea sequence is available, with environmental sequencing surveys reporting only a single partial sequence from a Diphyllatea-like organism. Accordingly, geographical distribution of Diphyllatea based on molecular data is limited, despite morphological data suggesting the class…

Read More »

Sunday, September 22, 2019

Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding.

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific…

Read More »

Sunday, September 22, 2019

Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest.

Soil microclimate is a potentially important regulator of the composition of plant-associated fungal communities in climates with significant drought periods. Here, we investigated the spatio-temporal dynamics of soil fungal communities in a Mediterranean Pinus pinaster forest in relation to soil moisture and temperature. Fungal communities in 336 soil samples collected monthly over 1 year from 28 long-term experimental plots were assessed by PacBio sequencing of ITS2 amplicons. Total fungal biomass was estimated by analysing ergosterol. Community changes were analysed in the context of functional traits. Soil fungal biomass was lowest during summer and late winter and highest during autumn, concurrent with…

Read More »

Sunday, September 22, 2019

High-resolution community profiling of arbuscular mycorrhizal fungi.

Community analyses of arbuscular mycorrhizal fungi (AMF) using ribosomal small subunit (SSU) or internal transcribed spacer (ITS) DNA sequences often suffer from low resolution or coverage. We developed a novel sequencing based approach for a highly resolving and specific profiling of AMF communities. We took advantage of previously established AMF-specific PCR primers that amplify a c. 1.5-kb long fragment covering parts of SSU, ITS and parts of the large ribosomal subunit (LSU), and we sequenced the resulting amplicons with single molecule real-time (SMRT) sequencing. The method was applicable to soil and root samples, detected all major AMF families and successfully…

Read More »

Sunday, September 22, 2019

Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities.

Plant-soil interactions link ecosystem fertility and organic matter accumulation below ground. Soil microorganisms play a central role as mediators of these interactions, but mechanistic understanding is still largely lacking. Correlative data from a coniferous forest ecosystem support the hypothesis that interactions between fungal guilds play a central role in regulating organic matter accumulation in relation to fertility. With increasing ecosystem fertility, the proportion of saprotrophic basidiomycetes increased in deeper organic layers, at the expense of ectomycorrhizal fungal species. Saprotrophs correlated positively with the activity of oxidative enzymes, which in turn favoured organic matter turnover and nitrogen recycling to plants. Combined,…

Read More »

Sunday, September 22, 2019

Fungal community shifts underpin declining mycelial production and turnover across a Pinus sylvestris chronosequence

Fungi play critical roles in ecosystem processes such as decomposition and nutrient cycling, but have also been highlighted as significant contributors to organic matter build-up in boreal forest soils. Ectomycorrhizal (ECM) mycelial biomass and necromass dynamics have recently been highlighted as essential for regulating build-up of soil organic matter. Understanding the extent to which shifts in mycelial community or growth trait composition cause changes in mycelial production and turnover over ecological gradients would aid a mechanistic understanding of these important processes at an ecosystem scale. Here, we test the hypotheses that shifting species and mycelial trait (exploration type) composition within…

Read More »

Sunday, September 22, 2019

Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests.

Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local…

Read More »

Sunday, September 22, 2019

Soil drying procedure affects the DNA quantification of Lactarius vinosus but does not change the fungal community composition.

Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater…

Read More »

Sunday, September 22, 2019

Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments.

DNA metabarcoding is widely used to study prokaryotic and eukaryotic microbial diversity. Technological constraints limit most studies to marker lengths below 600 base pairs (bp). Longer sequencing reads of several thousand bp are now possible with third-generation sequencing. Increased marker lengths provide greater taxonomic resolution and allow for phylogenetic methods of classification, but longer reads may be subject to higher rates of sequencing error and chimera formation. In addition, most bioinformatics tools for DNA metabarcoding were designed for short reads and are therefore unsuitable. Here, we used Pacific Biosciences circular consensus sequencing (CCS) to DNA-metabarcode environmental samples using a ca. 4,500 bp…

Read More »

Sunday, September 22, 2019

Root endophytes and invasiveness: no difference between native and non-native Phragmites in the Great Lakes Region

Microbial interactions could play an important role in plant invasions. If invasive plants associate with relatively more mutualists or fewer pathogens than their native counterparts, then microbial communities could foster plant invasiveness. Studies examining the effects of microbes on invasive plants commonly focus on a single microbial group (e.g., bacteria) or measure only plant response to microbes, not documenting the specific taxa associating with invaders. We surveyed root microbial communities associated with co-occurring native and non-native lineages of Phragmites australis, across Michigan, USA. Our aim was to determine whether (1) plant lineage was a stronger predictor of root microbial community…

Read More »

Sunday, September 22, 2019

Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence.

Soil microbial communities are abundant, hyper-diverse and mediate global biogeochemical cycles, but we do not yet understand the processes mediating their assembly. Current hypothetical frameworks suggest temporal (e.g. dispersal limitation) and environmental (e.g. soil pH) filters shape microbial community composition; however, there is limited empirical evidence supporting this framework in the hyper-diverse soil environment, particularly at large spatial (i.e. regional to continental) and temporal (i.e. 100 to 1000 years) scales. Here, we present evidence from a long-term chronosequence (4000 years) that temporal and environmental filters do indeed shape soil bacterial community composition. Furthermore, nearly 20 years of environmental monitoring allowed…

Read More »

Sunday, September 22, 2019

Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppe.

Foraging intensity of large herbivores may exert an indirect top-down ecological force on soil microbial communities via changes in plant litter inputs. We investigated the responses of the soil microbial community to elk (Cervus elaphus) winter range occupancy across a long-term foraging exclusion experiment in the sagebrush steppe of the North American Rocky Mountains, combining phylogenetic analysis of fungi and bacteria with shotgun metagenomics and extracellular enzyme assays. Winter foraging intensity was associated with reduced bacterial richness and increasingly distinct bacterial communities. Although fungal communities did not respond linearly to foraging intensity, a greater ß-diversity response to winter foraging exclusion…

Read More »

Sunday, September 22, 2019

Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities.

The use of co-occurrence patterns to investigate interactions between micro-organisms has provided novel insight into organismal interactions within microbial communities. However, anthropogenic impacts on microbial co-occurrence patterns and ecosystem function remain an important gap in our ecological knowledge. In a northern hardwood forest ecosystem located in Michigan, USA, 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. This ecosystem-level response occurred concomitantly with compositional changes in saprophytic fungi and bacteria. Here, we investigated the influence of experimental N deposition on biotic interactions among forest floor bacterial assemblages by employing phylogenetic and molecular…

Read More »

Sunday, September 22, 2019

Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides.

The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function…

Read More »

Sunday, September 22, 2019

Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality

The cultivation of Panax plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased in the soils of adult ginseng plants compared with those…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives