X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Hagenbo, Andreas and Kyaschenko, Julia and Clemmensen, Karina E and Lindahl, Bj?rn D and Fransson, Petra

Fungi play critical roles in ecosystem processes such as decomposition and nutrient cycling, but have also been highlighted as significant contributors to organic matter build-up in boreal forest soils. Ectomycorrhizal (ECM) mycelial biomass and necromass dynamics have recently been highlighted as essential for regulating build-up of soil organic matter. Understanding the extent to which shifts in mycelial community or growth trait composition cause changes in mycelial production and turnover over ecological gradients would aid a mechanistic understanding of these important processes at an ecosystem scale. Here, we test the hypotheses that shifting species and mycelial trait (exploration type) composition within the mycelial community underpin changes in biomass turnover with increasing forest age. We quantified mycelial turnover and assessed fungal community composition in a chronosequence of eight, 12- to 158-year-old, managed Pinus sylvestris forests. Turnover was estimated by determining mycelial biomass (ergosterol) in a sequence of ingrowth mesh bags and applying mathematical models. Fungal communities in the bags were identified using Pacific Biosciences sequencing of fungal ITS2 amplicons. To evaluate the accuracy of this method to represent all ECM fungi, community composition in bags was followed over time and compared with communities in soil. Mycelial communities changed with stand age, but we found no evidence that there were concurrent shifts in mycelial exploration types. Forest age and turnover were significantly correlated with ECM mycelial community composition and collectively explained 39.4% of total variation. The similarity between fungal communities in mesh bags and in soil was strongly forest age dependent, with communities in mesh bags diverging from soil communities in stands older than 60 years. However, in all stands, when bag incubation time exceeded 75 days, communities became more similar to soil communities. Synthesis. Our results support the idea that shifts in fungal community composition underpin the forest age-related decrease in mycelial turnover; however, since ingrowth mesh bags exclude some mycorrhizal species in older forests, it remains a possibility that turnover estimates were not reflecting the entire community. While we found no evidence that mycelial exploration types of fungi changed systematically with forest age, we suggest that other traits that relate to biomass turnover and necromass degradation require further study, as they may explain the extent to which ectomycorrhizal fungi regulate and contribute to soil organic matter accumulation.

Journal: Journal of ecology
DOI: 10.1111/1365-2745.12917
Year: 2018

Read Publication

 

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »