fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Improving eukaryotic genome annotation using single molecule mRNA sequencing.

The advantages of Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology include long reads, low systematic bias, and high consensus read accuracy. Here we use these attributes to improve on the genome annotation of the parasitic hookworm Ancylostoma ceylanicum using PacBio RNA-Seq.We sequenced 192,888 circular consensus sequences (CCS) derived from cDNAs generated using the CloneTech SMARTer system. These SMARTer-SMRT libraries were normalized and size-selected providing a robust population of expressed structural genes for subsequent genome annotation. We demonstrate PacBio mRNA sequences based genome annotation improvement, compared to genome annotation using conventional sequencing-by-synthesis alone, by identifying 1609 (9.2%) new genes, extended the…

Read More »

Sunday, September 22, 2019

De novo clustering of long-read transcriptome data using a greedy, quality-value based algorithm

Long-read sequencing of transcripts with PacBio Iso-Seq and Oxford Nanopore Technologies has proven to be central to the study of complex isoform landscapes in many organisms. However, current de novo transcript reconstruction algorithms from long-read data are limited, leaving the potential of these technologies unfulfilled. A common bottleneck is the dearth of scalable and accurate algorithms for clustering long reads according to their gene family of origin. To address this challenge, we develop isONclust, a clustering algorithm that is greedy (in order to scale) and makes use of quality values (in order to handle variable error rates). We test isONclust…

Read More »

Sunday, September 22, 2019

Tracking alternatively spliced isoforms from long reads by SpliceHunter.

Alternative splicing increases the functional complexity of a genome by generating multiple isoforms and potentially proteins from the same gene. Vast amounts of alternative splicing events are routinely detected by short read deep sequencing technologies but their functional interpretation is hampered by an uncertain transcript context. Emerging long-read sequencing technologies provide a more complete picture of full-length transcript sequences. We introduce SpliceHunter, a tool for the computational interpretation of long reads generated by for example Pacific Biosciences instruments. SpliceHunter defines and tracks isoforms and novel transcription units across time points, compares their splicing pattern to a reference annotation, and translates…

Read More »

Sunday, September 22, 2019

PacBio sequencing and its applications.

Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with diseases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its…

Read More »

Sunday, September 22, 2019

Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing.

Red clover (Trifolium pratense L.) is an important cool-season legume plant, which is the most widely planted forage legume after alfalfa. Although a draft genome sequence was published already, the sequences and completed structure of mRNA transcripts remain unclear, which limit further explore on red clover.In this study, the red clover transcriptome was sequenced using single-molecule long-read sequencing to identify full-length splice isoforms, and 29,730 novel isoforms from known genes and 2194 novel isoforms from novel genes were identified. A total of 5492 alternative splicing events was identified and the majority of alter spliced events in red clover was corrected…

Read More »

Sunday, September 22, 2019

Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon

A significant portion of genes in vertebrate genomes belongs to multigene families, with each family containing several gene copies whose presence/absence, as well as isoform structure, can be highly variable across individuals. Existing de novo techniques for assaying the sequences of such highly-similar gene families fall short of reconstructing end-to-end transcripts with nucleotide-level precision or assigning alternatively spliced transcripts to their respective gene copies. We present IsoCon, a high-precision method using long PacBio Iso-Seq reads to tackle this challenge. We apply IsoCon to nine Y chromosome ampliconic gene families and show that it outperforms existing methods on both experimental and…

Read More »

Sunday, September 22, 2019

Construction of a draft reference transcripts of onion (Allium cepa) using long-read sequencing

To obtain intact and full-length RNA transcripts of onion (Allium cepa), long-read sequencing technology was first applied. Total RNAs extracted from four tissues; flowers, leaves, bulbs and roots, of red–purple and yellow-colored onions (A. cepa) were sequenced using long-read sequencing (RSII platform, P4-C2 chemistry). The 99,247 polished high-quality isoforms were produced by sequence correction processes of consensus calling, quality filtering, orientation verification, misread-nucleotide correction and dot-matrix view. The dot-matrix view was subsequently used to remove artificial inverted repeats (IRs), and resultantly 421 IRs were removed. The remaining 98,826 isoforms were condensed to 35,505 through the removal process of redundant isoforms.…

Read More »

Sunday, September 22, 2019

Emergence, retention and selection: A trilogy of origination for functional de novo proteins from ancestral lncRNAs in primates.

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age,…

Read More »

Sunday, September 22, 2019

De novo assembly and characterizing of the culm-derived meta-transcriptome from the polyploid sugarcane genome based on coding transcripts

Sugarcane biomass has been used for sugar, bioenergy and biomaterial production. The majority of the sugarcane biomass comes from the culm, which makes it important to understand the genetic control of biomass production in this part of the plant. A meta-transcriptome of the culm was obtained in an earlier study by using about one billion paired-end (150 bp) reads of deep RNA sequencing of samples from 20 diverse sugarcane genotypes and combining de novo assemblies from different assemblers and different settings. Although many genes could be recovered, this resulted in a large combined assembly which created the need for clustering…

Read More »

Sunday, September 22, 2019

Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research.

The large and complex hexaploid genome has greatly hindered genomics studies of common wheat (Triticum aestivum, AABBDD). Here, we investigated transcripts in common wheat developing caryopses using the emerging single-molecule real-time (SMRT) sequencing technology PacBio RSII, and assessed the resultant data for improving common wheat genome annotation and grain transcriptome research.We obtained 197,709 full-length non-chimeric (FLNC) reads, 74.6 % of which were estimated to carry complete open reading frame. A total of 91,881 high-quality FLNC reads were identified and mapped to 16,188 chromosomal loci, corresponding to 13,162 known genes and 3026 new genes not annotated previously. Although some FLNC reads could…

Read More »

Sunday, September 22, 2019

Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data.

In this study, we established a general framework to use PacBio full-length transcriptome sequencing for the investigation of mitochondrial RNAs. As a result, we produced the first full-length human mitochondrial transcriptome using public PacBio data and characterized the human mitochondrial genome with more comprehensive and accurate information. Other results included determination of the H-strand primary transcript, identification of the ND5/ND6AS/tRNAGluAS transcript, discovery of palindrome small RNAs (psRNAs) and construction of the “mitochondrial cleavage” model, etc. These results reported for the first time in this study fundamentally changed annotations of human mitochondrial genome and enriched knowledge in the field of animal…

Read More »

Sunday, September 22, 2019

Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies.

Alternations in usage of polyadenylation sites during transcription termination yield transcript isoforms from a gene. Recent findings of transcriptome-wide alternative polyadenylation (APA) as a molecular response to changes in biology position APA not only as a molecular event of early transcriptional termination but also as a cellular regulatory step affecting various biological pathways. With the development of high-throughput profiling technologies at a single nucleotide level and their applications targeted to the 3′-end of mRNAs, dynamics in the landscape of mRNA 3′-end is measureable at a global scale. In this review, methods and technologies that have been adopted to study APA…

Read More »

Sunday, September 22, 2019

The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues.

Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5′ RACE, 3′ RACE, primer-walking RT-PCR, RNase protection, Northern blot and in situ hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P7503, P360 and…

Read More »

Sunday, September 22, 2019

Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection.

Hot pepper (Capsicum annuum L.) is becoming an increasingly important vegetable crop in the world. Cucumber mosaic virus (CMV) is a destructive virus that can cause leaf distortion and fruit lesions, affecting pepper production. However, studies on the response to CMV infection in pepper at the transcriptional level are limited. In this study, the transcript profiles of pepper leaves after CMV infection were investigated using Illumina and single-molecule real-time (SMRT) RNA-sequencing (RNA-seq). A total of 2143 differentially expressed genes (DEGs) were identified at five different stages. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the…

Read More »

Sunday, September 22, 2019

Single-cell multiomics: multiple measurements from single cells.

Single-cell sequencing provides information that is not confounded by genotypic or phenotypic heterogeneity of bulk samples. Sequencing of one molecular type (RNA, methylated DNA or open chromatin) in a single cell, furthermore, provides insights into the cell’s phenotype and links to its genotype. Nevertheless, only by taking measurements of these phenotypes and genotypes from the same single cells can such inferences be made unambiguously. In this review, we survey the first experimental approaches that assay, in parallel, multiple molecular types from the same single cell, before considering the challenges and opportunities afforded by these and future technologies. Copyright © 2016.…

Read More »

1 7 8 9 10

Subscribe for blog updates:

Archives

Stay
Current

Visit our blog »