Menu
June 1, 2021  |  

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual antibody repertoire variability and disease. To remedy this, we are taking a multi-faceted approach to improving existing genomic resources in the human IGH region. First, from whole-genome and fosmid-based datasets, we are building the largest and most ethnically diverse set of IGH reference assemblies to date, by employing PacBio long-read sequencing combined with novel algorithms for phased haplotype assembly. In total, our effort will result in the characterization of >15 phased haplotypes from individuals of Asian, African, and European descent, to be used as a representative reference set by the genomics and immunogenetics community. Second, we are utilizing this more comprehensive sequence catalogue to inform the design and analysis of novel targeted IGH genotyping assays. Standard targeted DNA enrichment methods (e.g., exome capture) are currently optimized for the capture of only very short (100’s of bp) DNA segments. Our platform uses a modified bench protocol to pair existing capture-array technologies with the enrichment of longer fragments of DNA, enabling the use of PacBio sequencing of DNA segments up to 7 Kb. This substantial increase in contiguity disambiguates many of the complex repeated structures inherent to the locus, while yielding the base pair fidelity required to call SNVs. Together these resources will establish a stronger framework for further characterizing IGH genetic diversity and facilitate IGH genomic profiling in the clinical and research settings, which will be key to fully understanding the role of IGH germline variation in antibody repertoire development and disease.


June 1, 2021  |  

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types. However, reference databases are based largely on European populations, and the full extent of diversity in Africa remains poorly understood. Here, we present the first systematic characterisation of HLA diversity within Africa in the pilot phase of the MHC Diversity in Africa Project, together with an evaluation of methods to carry out scalable cost-effective, as well as reliable, typing of this region in African populations.To sample a geographically representative panel of African populations we obtained 125 samples, 25 each from the Zulu (South Africa), Igbo (Nigeria), Kalenjin (Kenya), Moroccan and Ashanti (Ghana) groups. For methods validation we included two controls from the International Histocompatibility Working Group (IHWG) collection with known typing information. Sanger typing and Illumina HiSeq X sequencing of these samples indicated potentially novel Class I and Class II alleles; however, we found poor correlation between HiSeq X sequencing and SBT for both classes. Long Range PCR and high resolution PacBio RS-II typing of 4 of these samples identified 7 novel Class II alleles, highlighting the high levels of diversity in these populations, and the need for long read sequencing approaches to characterise this comprehensively. We have now expanded this approach to the entire pilot set of 125 samples. We present these confirmed types and discuss a workflow for scaling this to 5000 individuals across Africa.The large number of new alleles identified in our pilot suggests the high level of African HLA diversity and the utility of high resolution methods. The MDAP project will provide a framework for accurate HLA typing, in addition to providing an invaluable resource for imputation in GWAS, boosting power to identify and resolve HLA disease associations.


June 1, 2021  |  

Phased diploid genome assembly with single-molecule real-time sequencing

While genome assembly projects have been successful in many haploid and inbred species, the assembly of non-inbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


June 1, 2021  |  

De novo PacBio long-read assembled avian genomes correct and add to genes important in neuroscience and conservation research

To test the impact of high-quality genome assemblies on biological research, we applied PacBio long-read sequencing in conjunction with the new, diploid-aware FALCON-Unzip assembler to a number of bird species. These included: the zebra finch, for which a consortium-generated, Sanger-based reference exists, to determine how the FALCON-Unzip assembly would compare to the current best references available; Anna’s hummingbird genome, which had been assembled with short-read sequencing methods as part of the Avian Phylogenomics phase I initiative; and two critically endangered bird species (kakapo and ‘alala) of high importance for conservations efforts, whose genomes had not previously been sequenced and assembled.


June 1, 2021  |  

Structural variant detection with low-coverage Pacbio sequencing

Despite amazing progress over the past quarter century in the technology to detect genetic variants, intermediate-sized structural variants (50 bp to 50 kb) have remained difficult to identify. Such variants are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent de novo assemblies of human genomes have demonstrated the power of PacBio Single Molecule, Real-Time (SMRT) Sequencing to fill this technology gap and sensitively identify structural variants in the human genome. While de novo assembly is the ideal method to identify variants in a genome, it requires high depth of coverage. A structural variant discovery approach that utilizes lower coverage would facilitate evaluation of large patient and population cohorts. Here we introduce such an approach and apply it to 10-fold coverage of several human genomes generated on the PacBio Sequel System. To identify structural variants in low-fold coverage whole genome sequencing data, we apply a reference-based, re-sequencing workflow. First, reads are mapped to the human reference genome with a local aligner. The local alignments often end at structural variant loci. To connect co-linear local alignments across structural variants, we apply a novel algorithm that merges alignments into “chains” and refines the alignment edges. Then, the chained alignments are scanned for windows with an excess of insertions or deletions to identify candidate structural variant loci. Finally, the read support at each putative variant locus is evaluated to produce a variant call. Single nucleotide information is incorporated to phase and evaluate the zygosity of each structural variant. In 10-fold coverage human genome sequence, we identify the vast majority of the structural variants found by de novo assembly, thus demonstrating the power of low-fold coverage SMRT Sequencing to affordably and effectively detect structural variants.


June 1, 2021  |  

Detecting pathogenic structural variants with low-coverage PacBio sequencing.

Though a role for structural variants in human disease has long been recognized, it has remained difficult to identify intermediate-sized variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent studies have demonstrated that PacBio Single Molecule, Real-Time (SMRT) sequencing fills this technology gap. SMRT sequencing detects tens of thousands of structural variants in the human genome, approximately five times the sensitivity of short-read DNA sequencing.


June 1, 2021  |  

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.


June 1, 2021  |  

From RNA to full-length transcripts: The PacBio Iso-Seq method for transcriptome analysis and genome annotation

A single gene may encode a surprising number of proteins, each with a distinct biological function. This is especially true in complex eukaryotes. Short- read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. The PacBio Isoform Sequencing (Iso-Seq™) method employs long reads to sequence transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. These long reads result in complete, unambiguous information about alternatively spliced exons, transcriptional start sites, and poly- adenylation sites. This allows for the characterization of the full complement of isoforms within targeted genes, or across an entire transcriptome. Here we present improved genome annotations for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata), using the Iso-Seq method. We present graphical user interface and command line analysis workflows for the data sets. From brain total RNA, we characterize more than 15,000 isoforms in each species, 9% and 5% of which were previously unannotated in hummingbird and zebra finch, respectively. We highlight one example where capturing full-length transcripts identifies additional exons and UTRs.


June 1, 2021  |  

Detecting pathogenic structural variants with long-read PacBio SMRT Sequencing

Most of the base pairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization or optical mapping but too large to reliably discover with short-read DNA sequencing. Long-read sequencing with PacBio Single Molecule, Real-Time (SMRT) Sequencing platforms fills this technology gap. PacBio SMRT Sequencing detects tens of thousands of structural variants in a human genome with approximately five times the sensitivity of short-read DNA sequencing. Effective application of PacBio SMRT Sequencing to detect structural variants requires quality bioinformatics tools that account for the characteristics of PacBio reads. To provide such a solution, we developed pbsv, a structural variant caller for PacBio reads that works as a chain of simple stages: 1) map reads to the reference genome, 2) identify reads with signatures of structural variation, 3) cluster nearby reads with similar signatures, 4) summarize each cluster into a consensus variant, and 5) filter for variants with sufficient read support. To evaluate the baseline performance of pbsv, we generated high coverage of a diploid human genome on the PacBio Sequel System, established a target set of structural variants, and then titrated to lower coverage levels. The false discovery rate for pbsv is low at all coverage levels. Sensitivity is high even at modest coverage: above 85% at 10-fold coverage and above 95% at 20-fold coverage. To assess the potential for PacBio SMRT Sequencing to identify pathogenic variants, we evaluated an individual with clinical symptoms suggestive of Carney complex for whom short-read whole genome sequencing was uninformative. The individual was sequenced to 9-fold coverage on the PacBio Sequel System, and structural variants were called with pbsv. Filtering for rare, genic structural variants left six candidates, including a heterozygous 2,184 bp deletion that removes the first coding exon of PRKAR1A. Null mutations in PRKAR1Acause autosomal dominant Carney complex, type 1. The variant was determined to be de novo, and it was classified as likely pathogenic based on ACMG standards and guidelines for variant interpretation. These case studies demonstrate the ability of pbsv to detect structural variants in low-coverage PacBio SMRT Sequencing and suggest the importance of considering structural variants in any study of human genetic variation.


June 1, 2021  |  

De novo assembly and preliminary annotation of the Schizocardium californicum genome

Animals in the phylum Hemichordata have provided key understanding of the origins and development of body patterning and nervous system organization. However, efforts to sequence and assemble the genomes of highly heterozygous non-model organisms have proven to be difficult with traditional short read approaches. Long repetitive DNA structures, extensive structural variation between haplotypes in polyploid species, and large genome sizes are limiting factors to achieving highly contiguous genome assemblies. Here we present the highly contiguous de novo assembly and preliminary annotation of an indirect developing hemichordate genome, Schizocardium californicum, using SMRT Sequening long reads.


June 1, 2021  |  

Characterizing the pan-genome of maize with PacBio SMRT Sequencing

Maize is an amazingly diverse crop. A study in 20051 demonstrated that half of the genome sequence and one-third of the gene content between two inbred lines of maize were not shared. This diversity, which is more than two orders of magnitude larger than the diversity found between humans and chimpanzees, highlights the inability of a single reference genome to represent the full pan-genome of maize and all its variants. Here we present and review several efforts to characterize the complete diversity within maize using the highly accurate long reads of PacBio Single Molecule, Real-Time (SMRT) Sequencing. These methods provide a framework for a pan-genomic approach that can be applied to studies of a wide variety of important crop species.


June 1, 2021  |  

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).


June 1, 2021  |  

Joint calling and PacBio SMRT Sequencing for indel and structural variant detection in populations

Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare disease and common trait association studies, it is necessary to perform population-scale surveys with a technology effective at detecting indels and structural variants, such as PacBio SMRT Sequencing. For these studies, it is important to have a joint calling workflow that works with PacBio reads. We have developed pbsv, an indel and structural variant caller for PacBio reads, that provides a two-step joint calling workflow similar to that used to build the ExAC database. The first stage, discovery, is performed separately for each sample and consolidates whole genome alignments into a sparse representation of potentially variant loci. The second stage, calling, is performed on all samples together and considers only the signatures identified in the discovery stage. We applied the pbsv joint calling workflow to PacBio reads from twenty human genomes, with coverage ranging from 5-fold to 80-fold per sample for a total of 460-fold. The analysis required only 102 CPU hours, and identified over 800,000 indels and structural variants, including hundreds of inversions and translocations, many times more than discovered with short-read sequencing. The workflow is scalable to thousands of samples. The ongoing application of this workflow to thousands of samples will provide insight into the evolution and functional importance of large variants in human evolution and disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.