X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, February 26, 2021

Diploid genome assembly and comprehensive haplotype sequence reconstruction

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software:…

Read More »

Friday, February 26, 2021

Comparative Studies of Mammalian Sex Chromosomes: From Cytogenetics to NGS

It is a common knowledge that sex chromosome mutations are better tolerated and more viable compared to changes in autosomes. This is explained by relatively low gene density in both the X and the Y chromosome and by random X chromosome inactivation in mammalian females buffering the effect of X-aneuploidies. However, it is not well understood why apparently similar sex chromosome abnormalities, such as X-monosomy or certain Y chromosome rearrangements, result in different phenotypic effects in different species. It is thought that this is due to species differences in the organization of the Y chromosome, differences in the set of…

Read More »

Friday, February 26, 2021

Un-zipping diploid genomes – revealing all kinds of heterozygous variants from comprehensive hapltotig assemblies

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON (https://github.com/PacificBiosciences/FALCON), we developed new algorithms and software (FALCON-unzip) for de novo haplotype reconstructions from SMRT Sequencing data. We apply the algorithms and the prototype software for (1) a highly repetitive diploid…

Read More »

Friday, February 26, 2021

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue and Zika viruses by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are…

Read More »

Friday, February 26, 2021

An improved circular consensus algorithm with an application to detection of HIV-1 Drug-Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger Sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach arbitrarily high quality across longer insert lengths at a lower cost and higher throughput than Sanger Sequencing. We apply this new algorithm, dubbed CCS2, to the characterization of the HIV-1 K103N drug-resistance associated mutation, which…

Read More »

Friday, February 26, 2021

An improved circular consensus algorithm with an application to detect HIV-1 Drug Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach high quality across longer insert lengths at a lower cost and higher throughput than Sanger sequencing. We applied CCS2 to the characterization of the HIV-1 K103N drug-resistance associated mutation in both clonal and patient samples.…

Read More »

Friday, February 26, 2021

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual…

Read More »

Friday, February 26, 2021

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types.…

Read More »

Friday, February 26, 2021

Phased diploid genome assembly with single-molecule real-time sequencing

While genome assembly projects have been successful in many haploid and inbred species, the assembly of non-inbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short-…

Read More »

Friday, February 26, 2021

De novo PacBio long-read assembled avian genomes correct and add to genes important in neuroscience and conservation research

To test the impact of high-quality genome assemblies on biological research, we applied PacBio long-read sequencing in conjunction with the new, diploid-aware FALCON-Unzip assembler to a number of bird species. These included: the zebra finch, for which a consortium-generated, Sanger-based reference exists, to determine how the FALCON-Unzip assembly would compare to the current best references available; Anna’s hummingbird genome, which had been assembled with short-read sequencing methods as part of the Avian Phylogenomics phase I initiative; and two critically endangered bird species (kakapo and ‘alala) of high importance for conservations efforts, whose genomes had not previously been sequenced and assembled.

Read More »

Friday, February 26, 2021

Structural variant detection with low-coverage Pacbio sequencing

Despite amazing progress over the past quarter century in the technology to detect genetic variants, intermediate-sized structural variants (50 bp to 50 kb) have remained difficult to identify. Such variants are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent de novo assemblies of human genomes have demonstrated the power of PacBio Single Molecule, Real-Time (SMRT) Sequencing to fill this technology gap and sensitively identify structural variants in the human genome. While de novo assembly is the ideal method to identify variants in a genome, it requires high depth…

Read More »

Friday, February 26, 2021

Detecting pathogenic structural variants with low-coverage PacBio sequencing.

Though a role for structural variants in human disease has long been recognized, it has remained difficult to identify intermediate-sized variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent studies have demonstrated that PacBio Single Molecule, Real-Time (SMRT) sequencing fills this technology gap. SMRT sequencing detects tens of thousands of structural variants in the human genome, approximately five times the sensitivity of short-read DNA sequencing.

Read More »

Friday, February 26, 2021

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.

Read More »

Friday, February 26, 2021

From RNA to full-length transcripts: The PacBio Iso-Seq method for transcriptome analysis and genome annotation

A single gene may encode a surprising number of proteins, each with a distinct biological function. This is especially true in complex eukaryotes. Short- read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. The PacBio Isoform Sequencing (Iso-Seq™) method employs long reads to sequence transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. These long reads result in complete, unambiguous information about alternatively spliced exons, transcriptional…

Read More »

Friday, February 26, 2021

Detecting pathogenic structural variants with long-read PacBio SMRT Sequencing

Most of the base pairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization or optical mapping but too large to reliably discover with short-read DNA sequencing. Long-read sequencing with PacBio Single Molecule, Real-Time (SMRT) Sequencing platforms fills this technology gap. PacBio SMRT Sequencing detects tens of thousands of structural variants in a human genome with approximately five times the sensitivity of short-read DNA sequencing. Effective application of PacBio SMRT Sequencing to detect structural variants requires quality bioinformatics tools that account for…

Read More »

1 2 3 4 5 223

Subscribe for blog updates:

Archives