Menu
July 7, 2019

Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine.

The microbiota in the small intestine relies on their capacity to rapidly import and ferment available carbohydrates to survive in a complex and highly competitive ecosystem. Understanding how these communities function requires elucidating the role of its key players, the interactions among them and with their environment/host.The genome of the gut bacterium Romboutsia ilealis CRIBT was sequenced with multiple technologies (Illumina paired-end, mate-pair and PacBio). The transcriptome was sequenced (Illumina HiSeq) after growth on three different carbohydrate sources, and short chain fatty acids were measured via HPLC.We present the complete genome of Romboutsia ilealis CRIBT, a natural inhabitant and key player of the small intestine of rats. R. ilealis CRIBT possesses a circular chromosome of 2,581,778 bp and a plasmid of 6,145 bp, carrying 2,351 and eight predicted protein coding sequences, respectively. Analysis of the genome revealed limited capacity to synthesize amino acids and vitamins, whereas multiple and partially redundant pathways for the utilization of different relatively simple carbohydrates are present. Transcriptome analysis allowed identification of the key components in the degradation of glucose, L-fucose and fructo-oligosaccharides.This revealed that R. ilealis CRIBT is adapted to a nutrient-rich environment where carbohydrates, amino acids and vitamins are abundantly available.


July 7, 2019

Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network.

Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3′-5′)-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world-the input stimuli-into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility-the output phenotypes. How does the ‘uninformed’ process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory experiments we propose a mathematical model where the c-di-GMP network is analogous to a machine learning classifier. The analogy immediately suggests a mechanism for learning through evolution: adaptation though incremental changes in c-di-GMP network proteins acquires knowledge from past experiences and enables bacteria to use it to direct future behaviors. Our model clarifies the elusive function of the ubiquitous c-di-GMP network, a key regulator of bacterial social traits associated with virulence. More broadly, the link between evolution and machine learning can help explain how natural selection across fluctuating environments produces networks that enable living organisms to make sophisticated decisions.


July 7, 2019

A novel aerobic degradation pathway of thiobencarb is initiated by a two-component FMN-dependent monooxygenase system TmoAB in Acidovorax sp. T1.

Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in this strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28-32% identities with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi and dibenzothiophene monooxygenase from Rhodococcus sp.. TmoB shared 25-37% identities with reported flavin reductases and oxidized NADH but not NADPH. TmoAB was an FMN-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD(+) as a cofactor. A gene cluster responsible for complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis.IMPORTANCE Microbial degradation is the main factor of thiobencarb dissipation in soil. In previous reports, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation and dechlorination. However, enzymes and genes involved in microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in strain Acidovorax sp. T1 and identified a novel two-component FMN-dependent monooxygenase system TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical and genetic foundation of thiobencarb degradation in this microorganism. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Genome and plasmid sequences of Escherichia coli KV7, an extended-spectrum ß-lactamase isolate derived from feces of a healthy pig.

We present single-contig assemblies for Escherichia coli strain KV7 (serotype O27, phylogenetic group D) and its six plasmids, isolated from a healthy pig, as determined by PacBio RS II and Illumina MiSeq sequencing. The chromosome of 4,997,475 bp and G+C content of 50.75% harbored 4,540 protein-encoding genes. Copyright © 2017 Bateman et al.


July 7, 2019

Bacteriophages are the major drivers of Shigella flexneri serotype 1c genome plasticity: a complete genome analysis.

Shigella flexneri is the primary cause of bacillary dysentery in the developing countries. S. flexneri serotype 1c is a novel serotype, which is found to be endemic in many developing countries, but little is known about its genomic architecture and virulence signatures. We have sequenced for the first time, the complete genome of S. flexneri serotype 1c strain Y394, to provide insights into its diversity and evolution.We generated a high-quality reference genome of S. flexneri serotype 1c using the hybrid methods of long-read single-molecule real-time (SMRT) sequencing technology and short-read MiSeq (Illumina) sequencing technology. The Y394 chromosome is 4.58 Mb in size and shares the basic genomic features with other S. flexneri complete genomes. However, it possesses unique and highly modified O-antigen structure comprising of three distinct O-antigen modifying gene clusters that potentially came from three different bacteriophages. It also possesses a large number of hypothetical unique genes compared to other S. flexneri genomes.Despite a high level of structural and functional similarities of Y394 genome with other S. flexneri genomes, there are marked differences in the pathogenic islands. The diversity in the pathogenic islands suggests that these bacterial pathogens are well adapted to respond to the selection pressures during their evolution, which might contribute to the differences in their virulence potential.


July 7, 2019

Resistance to ceftazidime-avibactam is due to tranposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity.

Ceftazidime-avibactam is an antibiotic with activity against serine beta-lactamases, including Klebsiella pneumoniae carbapenemase (KPC). Recently, reports have emerged of KPC-producing isolates resistant to this antibiotic, including a report of a wild-type KPC-3 producing sequence type 258 Klebsiella pneumoniae that was resistant to ceftazidime-avibactam. We describe a detailed analysis of this isolate, in the context of two other closely related KPC-3 producing isolates, recovered from the same patient. Both isolates encoded a nonfunctional OmpK35, whereas we demonstrate that a novel T333N mutation in OmpK36, present in the ceftazidime-avibactam resistant isolate, reduced the activity of this porin and impacted ceftazidime-avibactam susceptibility. In addition, we demonstrate that the increased expression of blaKPC-3 and blaSHV-12 observed in the ceftazidime-avibactam-resistant isolate was due to transposition of the Tn4401 transposon harboring blaKPC-3 into a second plasmid, pIncX3, which also harbored blaSHV-12, ultimately resulting in a higher copy number of blaKPC-3 in the resistant isolate. pIncX3 plasmid from the ceftazidime-avibactam resistant isolate, conjugated into a OmpK35/36-deficient K. pneumoniae background that harbored a mutation to the ramR regulator of the acrAB efflux operon recreated the ceftazidime-avibactam-resistant MIC of 32 µg/ml, confirming that this constellation of mutations is responsible for the resistance phenotype. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale.

Genetic information about Enterococcus hirae is limited, a feature that has compromised our understanding of these clinically challenging bacteria. In this study, comparative analysis was performed of E. hirae R17, a daptomycin-resistant strain isolated from pork purchased from a retail market in Beijing, China, and three other enterococcal genomes (Enterococcus faecium DO, Enterococcus faecalis V583, and E. hirae ATCC™ 9790). Some 1,412 genes were identified that represented the core genome together with an additional 139 genes that were specific to E. hirae R17. The functions of these R17 strain-specific coding sequences relate to the COGs categories of carbohydrate transport and metabolism and transcription, a finding that suggests the carbohydrate utilization capacity of E. hirae R17 may be more extensive when compared with the other three bacterial species (spp.). Analysis of genomic islands and virulence genes highlighted the potential that horizontal gene transfer played as a contributor of variations in pathogenicity in this isolate. Drug-resistance gene prediction and antibiotic susceptibility testing indicated E. hirae R17 was resistant to several antimicrobial compounds, including bacitracin, ciprofloxacin, daptomycin, erythromycin, and tetracycline, thereby limiting chemotherapeutic treatment options. Further, tolerance to biocides and metals may confer a phenotype that facilitates the survival and adaptation of this isolate against food preservatives, disinfectants, and antibacterial coatings. The genomic plasticity, mediated by IS elements, transposases, and tandem repeats, identified in the E. hirae R17 genome may support adaptation to new environmental niches, such as those that are found in hospitalized patients. A predicted transmissible plasmid, pRZ1, was found to carry several antimicrobial determinants, along with some predicted pathogenic genes. These data supported the previously determined phenotype confirming that the foodborne E. hirae R17 is a multidrug-resistant pathogenic bacterium with evident genome plasticity and environmental adaptability.© 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


July 7, 2019

Recent expansion and adaptive evolution of the carcinoembryonic antigen family in bats of the Yangochiroptera subgroup.

Expansions of gene families are predictive for ongoing genetic adaptation to environmental cues. We describe such an expansion of the carcinoembryonic antigen (CEA) gene family in certain bat families. Members of the CEA family in humans and mice are exploited as cellular receptors by a number of pathogens, possibly due to their function in immunity and reproduction. The CEA family is composed of CEA-related cell adhesion molecules (CEACAMs) and secreted pregnancy-specific glycoproteins (PSGs). PSGs are almost exclusively expressed by trophoblast cells at the maternal-fetal interface. The reason why PSGs exist only in a minority of mammals is still unknown.Analysis of the CEA gene family in bats revealed that in certain bat families, belonging to the subgroup Yangochiroptera but not the Yinpterochiroptera subgroup an expansion of the CEA gene family took place, resulting in approximately one hundred CEA family genes in some species of the Vespertilionidae. The majority of these genes encode secreted PSG-like proteins (further referred to as PSG). Remarkably, we found strong evidence that the ligand-binding domain (IgV-like domain) of PSG is under diversifying positive selection indicating that bat PSGs may interact with structurally highly variable ligands. Such ligands might represent bacterial or viral pathogen adhesins. We have identified two distinct clusters of PSGs in three Myotis species. The two PSG cluster differ in the amino acids under positive selection. One cluster was only expanded in members of the Vespertilionidae while the other was found to be expanded in addition in members of the Miniopteridae and Mormoopidae. Thus one round of PSG expansion may have occurred in an ancestry of all three families and a second only in Vespertilionidae. Although maternal ligands of PSGs may exist selective challenges by two distinct pathogens seem to be likely responsible for the expansion of PSGs in Vespertilionidae.The rapid expansion of PSGs in certain bat species together with selection for diversification suggest that bat PSGs could be part of a pathogen defense system by serving as decoy receptors and/or regulators of feto-maternal interactions.


July 7, 2019

Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food.

Mcr-1-harboring Enterobacteriaceae are reported worldwide since their first discovery in 2015. However, a limited number of studies are available that compared full-length plasmid sequences of human and animal origins.In this study, mcr-1-bearing plasmids from seven Escherichia coli isolates recovered from patients (n = 3), poultry meat (n = 2) and turkey meat (n = 2) in Switzerland were further analyzed and compared. Isolates were characterized by multilocus sequence typing (MLST). The mcr-1-bearing plasmids were transferred by transformation into reference strain E. coli DH5a and MCR-1-producing transformants were selected on LB-agar supplemented with 2 mg/L colistin. Purified plasmids were then sequenced and compared.MLST revealed six distinct STs, illustrating the high clonal diversity among mcr-1-positive E. coli isolates of different origins. Two different mcr-1-positive plasmids were identified from a single E. coli ST48 human isolate. All other isolates possessed a single mcr-1 harboring plasmid. Transferable IncI2 (size ca. 60-61 kb) and IncX4 (size ca. 33-35 kb) type plasmids each bearing mcr-1 were found associated with human and food isolates. None of the mcr-1-positive IncI2 and IncX4 plasmids possessed any additional resistance determinants. Surprisingly, all but one of the sequenced mcr-1-positive plasmids lacked the ISApl1 element, which is a key element mediating acquisition of mcr-1 into various plasmid backbones.There is strong evidence that the food chain may be an important transmission route for mcr-1-bearing plasmids. Our data suggest that some “epidemic” plasmids rather than specific E. coli clones might be responsible for the spread of the mcr-1 gene along the food chain.


July 7, 2019

LOGAN: A framework for LOssless Graph-based ANalysis of high throughput sequence data

Recent massive growth in the production of sequencing data necessitates matching improvements in bioinformatics tools to effectively utilize it. Existing tools suffer from limitations in both scalability and applicability which are inherent to their underlying algorithms and data structures. We identify the key requirements for the ideal data structure for sequence analyses: it should be informationally lossless, locally updatable, and memory efficient; requirements which are not met by data structures underlying the major assembly strategies Overlap Layout Consensus and De Bruijn Graphs. We therefore propose a new data structure, the LOGAN graph, which is based on a memory efficient Sparse De Bruijn Graph with routing information. Innovations in storing routing information and careful implementation allow sequence datasets for Escherichia coli (4.6Mbp, 117x coverage), Arabidopsis thaliana (135Mbp, 17.5x coverage) and Solanum pennellii (1.2Gbp, 47x coverage) to be loaded into memory on a desktop computer in seconds, minutes, and hours respectively. Memory consumption is competitive with state of the art alternatives, while losslessly representing the reads in an indexed and updatable form. Both Second and Third Generation Sequencing reads are supported. Thus, the LOGAN graph is positioned to be the backbone for major breakthroughs in sequence analysis such as integrated hybrid assembly, assembly of exceptionally large and repetitive genomes, as well as assembly and representation of pan-genomes.


July 7, 2019

The rapid in vivo evolution of Pseudomonas aeruginosa in ventilator-associated pneumonia patients leads to attenuated virulence.

Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl, and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.© 2017 The Authors.


July 7, 2019

Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences.

Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.


July 7, 2019

The biofilm inhibitor carolacton enters Gram-negative cells: studies using a TolC-deficient strain of Escherichia coli.

The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) ? (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine ß-naphthylamide (PAßN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.