Menu
July 7, 2019  |  

A novel aerobic degradation pathway of thiobencarb is initiated by a two-component FMN-dependent monooxygenase system TmoAB in Acidovorax sp. T1.

Authors: Chu, Cui-Wei and Liu, Bin and Li, Na and Yao, Shi-Gang and Cheng, Dan and Zhao, Jia-Dong and Qiu, Ji-Guo and Yan, Xin and He, Qin and He, Jian

Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in this strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28-32% identities with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi and dibenzothiophene monooxygenase from Rhodococcus sp.. TmoB shared 25-37% identities with reported flavin reductases and oxidized NADH but not NADPH. TmoAB was an FMN-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD(+) as a cofactor. A gene cluster responsible for complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis.IMPORTANCE Microbial degradation is the main factor of thiobencarb dissipation in soil. In previous reports, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation and dechlorination. However, enzymes and genes involved in microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in strain Acidovorax sp. T1 and identified a novel two-component FMN-dependent monooxygenase system TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical and genetic foundation of thiobencarb degradation in this microorganism. Copyright © 2017 American Society for Microbiology.

Journal: Applied and environmental microbiology
DOI: 10.1128/AEM.01490-17
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.