Orchardgrass (Dactylis glomerata L.) is an important forage grass for cultivating livestock worldwide. Here, we report an ~1.84-Gb chromosome-scale diploid genome assembly of orchardgrass, with a contig N50 of 0.93 Mb, a scaffold N50 of 6.08 Mb and a super-scaffold N50 of 252.52 Mb, which is the first chromosome-scale assembled genome of a cool-season forage grass. The genome includes 40 088 protein-coding genes, and 69% of the assembled sequences are transposable elements, with long terminal repeats (LTRs) being the most abundant. The LTRretrotransposons may have been activated and expanded in the grass genome in response to environmental changes during the Pleistocene between 0 and…
Candida auris is an emergent yeast pathogen, easily transmissible between patients and with high percent of multidrug resistant strains. Here we present a draft genome sequence of the first known Russian strain of C. auris, isolated from a case of candidemia. The strain clustered within South Asian C. auris clade and seemingly represented an independent event of dissemination from the original species range. Observed fluconazole resistance was probably due to F105L and K143R mutations in ERG11. © The Author(s) 2019. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology.
Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It…
Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions…
Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of…
The antimicrobial resistance (AMR) crisis represents a serious threat to public health and has resulted in concentrated efforts to accelerate development of rapid molecular diagnostics for AMR. In combination with publicly-available web-based AMR databases, whole genome sequencing (WGS) offers the capacity for rapid detection of antibiotic resistance genes. Here we studied the concordance between WGS-based resistance prediction and phenotypic susceptibility testing results for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus (VRE) clinical isolates using publicly-available tools and databases.Clinical isolates prospectively collected at the University of Pittsburgh Medical Center between December 2016 and December 2017 underwent WGS. Antibiotic resistance gene…
Pepper is an important vegetable with great economic value and unique biological features. In the past few years, significant development has been made towards understanding the huge complex pepper genome; however, pepper functional genomics has not been well studied. To better understand the pepper gene structure and pepper gene regulation, we conducted full-length mRNA sequencing by PacBio sequencing and obtained 57862 high-quality full-length mRNA sequences derived from 18362 previously annotated and 5769 newly detected genes. New gene models were built that combined the full-length mRNA sequences and corrected approximately 500 fragmented gene models from previous annotations. Based on the full-length…
Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long-term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay-transfer between 1997 and 2014. RAD-seq genotyping revealed that the stenoecious flood-plain species Arabis nemorensis is co-occurring with individuals that, based on ploidy, ITS-sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay-transfer maintains…
The evolution and global transmission of antimicrobial resistance has been well documented in Gram-negative bacteria and healthcare-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. Here, we trace the recent origins and global spread of a multidrug resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology…
Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.
Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE.Copyright © 2019 DasSarma et al.
Here, we report the complete genome sequence and full methylome analysis of a newly isolated, aerobic, thermophilic, Gram-positive actinomycete, a strain of Thermoactinomyces vulgaris designated strain 2H.Copyright © 2019 Mankai et al.
In this announcement, we present the complete annotated genome sequence of an Escherichia coli MC4100 mutant strain, BE104. This strain has several methionine sulfoxide reductase gene deletions, making it ideal for studying enzymes that alter the redox state of methionine.Copyright © 2019 Anton et al.
The genomes of two extremely halophilic Archaea species, Haloarcula marismortui and Haloferax mediterranei, were sequenced using single-molecule real-time sequencing. The ~4-Mbp genomes are GC rich with multiple large plasmids and two 4-methyl-cytosine patterns. Methyl transferases were incorporated into the Restriction Enzymes Database (REBASE), and gene annotation was incorporated into the Haloarchaeal Genomes Database (HaloWeb).Copyright © 2019 DasSarma et al.
Raoultella terrigena is a bacterial species associated with soil and aquatic environments; however, sporadic cases of opportunistic disease in humans have been reported. Here, we report the first two complete genome sequences from clinical strains isolated from human sources that have been deposited in the National Collection of Type Cultures (NCTC). © Crown copyright 2019.