Menu
September 22, 2019  |  

The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution.

The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys’ unique biology and evolutionary/comparative perspective.


September 22, 2019  |  

Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation.

The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome.The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads.The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.


September 22, 2019  |  

Reproducible integration of multiple sequencing datasets to form high-confidence SNP, indel, and reference calls for five human genome reference materials

Benchmark small variant calls from the Genome in a Bottle Consortium (GIAB) for the CEPH/HapMap genome NA12878 (HG001) have been used extensively for developing, optimizing, and demonstrating performance of sequencing and bioinformatics methods. Here, we develop a reproducible, cloud-based pipeline to integrate multiple sequencing datasets and form benchmark calls, enabling application to arbitrary human genomes. We use these reproducible methods to form high-confidence calls with respect to GRCh37 and GRCh38 for HG001 and 4 additional broadly-consented genomes from the Personal Genome Project that are available as NIST Reference Materials. These new genomes’ broad, open consent with few restrictions on availability of samples and data is enabling a uniquely diverse array of applications. Our new methods produce 17% more high-confidence SNPs, 176% more indels, and 12% larger regions than our previously published calls. To demonstrate that these calls can be used for accurate benchmarking, we compare other high-quality callsets to ours (e.g., Illumina Platinum Genomes), and we demonstrate that the majority of discordant calls are errors in the other callsets, We also highlight challenges in interpreting performance metrics when benchmarking against imperfect high-confidence calls. We show that benchmarking tools from the Global Alliance for Genomics and Health can be used with our calls to stratify performance metrics by variant type and genome context and elucidate strengths and weaknesses of a method.


September 22, 2019  |  

Parliament2: Fast structural variant calling using optimized combinations of callers

Here we present Parliament2: a structural variant caller which combines multiple best-in-class structural variant callers to create a highly accurate callset. This captures more events than the individual callers achieve independently. Parliament2 uses a call-overlap-genotype approach that is highly extensible to new methods and presents users the choice to run some or all of Breakdancer, Breakseq, CNVnator, Delly, Lumpy, and Manta to run. Parliament2 applies an additional parallelization framework to speed certain callers and executes these in parallel, taking advantage of the different resource requirements to complete structural variant calling much faster than running the programs individually. Parliament2 is available as a Docker container, which pre-installs all required dependencies. This allows users to run any caller with easy installation and execution. This Docker container can easily be deployed in cloud or local environments and is available as an app on DNAnexus.


September 22, 2019  |  

Variation graph toolkit improves read mapping by representing genetic variation in the reference.

Reference genomes guide our interpretation of DNA sequence data. However, conventional linear references represent only one version of each locus, ignoring variation in the population. Poor representation of an individual’s genome sequence impacts read mapping and introduces bias. Variation graphs are bidirected DNA sequence graphs that compactly represent genetic variation across a population, including large-scale structural variation such as inversions and duplications. Previous graph genome software implementations have been limited by scalability or topological constraints. Here we present vg, a toolkit of computational methods for creating, manipulating, and using these structures as references at the scale of the human genome. vg provides an efficient approach to mapping reads onto arbitrary variation graphs using generalized compressed suffix arrays, with improved accuracy over alignment to a linear reference, and effectively removing reference bias. These capabilities make using variation graphs as references for DNA sequencing practical at a gigabase scale, or at the topological complexity of de novo assemblies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.