Menu
September 22, 2019

RAD sequencing and a hybrid Antarctic fur seal genome assembly reveal rapidly decaying linkage disequilibrium, global population structure and evidence for inbreeding.

Recent advances in high throughput sequencing have transformed the study of wild organisms by facilitating the generation of high quality genome assemblies and dense genetic marker datasets. These resources have the potential to significantly advance our understanding of diverse phenomena at the level of species, populations and individuals, ranging from patterns of synteny through rates of linkage disequilibrium (LD) decay and population structure to individual inbreeding. Consequently, we used PacBio sequencing to refine an existing Antarctic fur seal (Arctocephalus gazella) genome assembly and genotyped 83 individuals from six populations using restriction site associated DNA (RAD) sequencing. The resulting hybrid genome comprised 6,169 scaffolds with an N50 of 6.21 Mb and provided clear evidence for the conservation of large chromosomal segments between the fur seal and dog (Canis lupus familiaris). Focusing on the most extensively sampled population of South Georgia, we found that LD decayed rapidly, reaching the background level by around 400 kb, consistent with other vertebrates but at odds with the notion that fur seals experienced a strong historical bottleneck. We also found evidence for population structuring, with four main Antarctic island groups being resolved. Finally, appreciable variance in individual inbreeding could be detected, reflecting the strong polygyny and site fidelity of the species. Overall, our study contributes important resources for future genomic studies of fur seals and other pinnipeds while also providing a clear example of how high throughput sequencing can generate diverse biological insights at multiple levels of organization. Copyright © 2018 Humble et al.


September 22, 2019

Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire.

Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.© 2018 The Authors New Phytologist © 2018 New Phytologist Trust.


September 22, 2019

Complete genome sequence provides insights into the biodrying-related microbial function of Bacillus thermoamylovorans isolated from sewage sludge biodrying material.

To enable the development of microbial agents and identify suitable candidate used for biodrying, the existence and function of Bacillus thermoamylovorans during sewage sludge biodrying merits investigation. This study isolated a strain of B. thermoamylovorans during sludge biodrying, submitted it for complete genome sequencing and analyzed its potential microbial functions. After biodrying, the moisture content of the biodrying material decreased from 66.33% to 50.18%, and B. thermoamylovorans was the ecologically dominant Bacillus, with the primary annotations associated with amino acid transport and metabolism (9.53%) and carbohydrate transport and metabolism (8.14%). It contains 96 carbohydrate-active- enzyme-encoding gene counts, mainly distributed in glycoside hydrolases (33.3%) and glycosyl transferases (27.1%). The virulence factors are mainly associated with biosynthesis of capsule and polysaccharide capsule. This work indicates that among the biodrying microorganisms, B. thermoamylovorans has good potential for degrading recalcitrant and readily degradable components, thus being a potential microbial agent used to improve biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019

Whole-genome sequence and genome annotation of Xanthomonas citri pv. mangiferaeindicae, causal agent of bacterial black spot on Mangifera indica.

A newly isolated strain XC01 was identified as Xanthomonas citri pv. mangiferaeindicae, isolated from an infected mango fruit in Guangxi, China. The complete genome sequence of XC01 was carried out using the PacBio RSII platform. The genome contains a circular chromosome with 3,865,165 bp, 3442 protein-coding genes, 53 tRNAs, and 2 rRNA operons. Phylogenetic analysis revealed that this pathogen is very close to the soybeans bacterial pustule pathogen X. citri pv. glycines CFBP 2526, with a completely different host range. The genome sequence of XC01 may shed a highlight genes with a demonstrated or proposed role in on the pathogenesis.


September 22, 2019

Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections.

Staphylococcus aureus can cause wide range of infections from simple soft skin infections to severe endocarditis, bacteremia, osteomyelitis and implant associated bone infections (IABI). The focus of the present investigation was to study virulence properties of S. aureus isolates from acute and chronic IABI by means of their in vivo lethality, in vitro osteoblasts invasion, biofilm formation and subsequently whole genome comparison between high and low virulent strains. Application of insect infection model Galleria mellonella revealed high, intermediate and low virulence phenotypes of these clinical isolates, which showed good correlation with osteoblast invasion and biofilm formation assays. Comparative genomics of selected high (EDCC 5458) and low (EDCC 5464) virulent strains enabled the identification of molecular factors responsible for the development of acute and chronic IABI. Accordingly, the low virulent strain EDCC 5464 harbored point mutations resulting in frame shift mutations in agrC (histidine kinase in agr system), graS (histidine kinase in graSR, a two component system) and efeB (peroxidase in efeOBU operon, an iron acquisition system) genes. Additionally, we found a mobile element (present 11 copies in EDCC 5464) inserted at the end of ß-hemolysin (hlb) and sarU genes, which are involved in the pathogenesis and regulation of virulence gene expression in coordination with quorum sensing system. All these results are in good support with the low virulence behavior of EDCC 5464. From the previous literature, it is well known that agr defective S. aureus clinical strains are isolated from the chronic infections. Similarly, low virulent EDCC 5464 was isolated from chronic implant-associated bone infections infection whereas EDCC 5458 was obtained from acute implant-associated bone infections. Laboratory based in vitro and in vivo results and insights from comparative genomic analysis could be correlated with the clinical conclusion of IABIs and allows evidence-based treatment strategies based on the pathogenesis of the strain to cure life devastating implant-associated infections. Copyright © 2018 Elsevier GmbH. All rights reserved.


September 22, 2019

T-independent IFN? and B cells cooperate to prevent mortality associated with disseminated Chlamydia muridarum genital tract infection.

CD4 T cells and antibody are required for optimal acquired immunity to C. muridarum genital tract infection, and T cell-mediated IFN? production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice with C. muridarum CM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal for STAT1-/- and IFNG-/- mice, where IFN? signaling is absent, and for Rag1-/- mice that lack T and B cells, but retain innate IFN? signaling. In contrast, B cell-deficient muMT mice that can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN? signaling survived. These data collectively indicate that IFN? prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell co-requirement. Adoptive transfer of convalescent immune sera, but not naïve IgM, to Rag1-/- mice infected with CM001 significantly increased survival time, while transfer of naïve B cells completely rescued Rag1-/- mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T-independent B cell responses and innate IFN? in chlamydial host defense, and suggest interactions between T-independent antibody and IFN? are essential for limiting extragenital dissemination. Copyright © 2018 American Society for Microbiology.


September 22, 2019

Clonal emergence of invasive multidrug-resistant Staphylococcus epidermidis deconvoluted via a combination of whole-genome sequencing and microbiome analyses.

Pathobionts, bacteria that are typically human commensals but can cause disease, contribute significantly to antimicrobial resistance. Staphylococcus epidermidis is a prototypical pathobiont as it is a ubiquitous human commensal but also a leading cause of healthcare-associated bacteremia. We sought to determine the etiology of a recent increase in invasive S. epidermidis isolates resistant to linezolid.Whole-genome sequencing (WGS) was performed on 176 S. epidermidis bloodstream isolates collected at the MD Anderson Cancer Center in Houston, Texas, between 2013 and 2016. Molecular relationships were assessed via complementary phylogenomic approaches. Abundance of the linezolid resistance determinant cfr was determined in stool samples via reverse-transcription quantitative polymerase chain reaction.Thirty-nine of the 176 strains were linezolid resistant (22%). Thirty-one of the 39 linezolid-resistant S. epidermidis infections were caused by a particular clone resistant to multiple antimicrobials that spread among leukemia patients and carried cfr on a 49-kb plasmid (herein called pMB151a). The 6 kb of pMB151a surrounding the cfr gene was nearly 100% identical to a cfr-containing plasmid isolated from livestock-associated staphylococci in China. Analysis of serial stool samples from leukemia patients revealed progressive staphylococcal domination of the intestinal microflora and an increase in cfr abundance following linezolid use.The combination of linezolid use plus transmission of a multidrug-resistant clone drove expansion of invasive, linezolid-resistant S. epidermidis. Our results lend support to the notion that a combination of antibiotic stewardship plus infection control measures may help to control the spread of a multidrug-resistant pathobiont.


September 22, 2019

Redefinition and unification of the SXT/R391 family of integrative and conjugative elements.

Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5′ end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family.IMPORTANCEVibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance. Copyright © 2018 American Society for Microbiology.


September 22, 2019

Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain.

Lactobacillus plantarum (L. plantarum) K25 is a probiotic strain isolated from Tibetan kefir. Previous studies showed that this exopolysaccharide (EPS)-producing strain was antimicrobial active and cold tolerant. These functional traits were evidenced by complete genome sequencing of strain K25 with a circular 3,175,846-bp chromosome and six circular plasmids, encoding 3365 CDSs, 16 rRNA genes and 70 tRNA genes. Genomic analysis of L. plantarum K25 illustrates that this strain contains the previous reported mechanisms of probiotic functionality and cold tolerance, involving plantaricins, lysozyme, bile salt hydrolase, chaperone proteins, osmoprotectant, oxidoreductase, EPSs and terpenes. Interestingly, strain K25 harbors more genes that function in defense mechanisms, and lipid transport and metabolism, in comparison with other L. plantarum strains reported. The present study demonstrates the comprehensive analysis of genes related to probiotic functionalities of an EPS-producing L. plantarum strain based on whole genome sequencing.


September 22, 2019

Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing.

N6-Methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes; however, methods for high-resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single-nucleotide and single-molecule resolution. For human lymphoblastoid cells (hLCLs), it was necessary to integrate SMRT sequencing data with independent sequencing data. The joint analyses suggest putative m6dA events are enriched in the promoters of young full-length LINE-1 elements (L1s), but call for validation by additional methods. These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes.© 2018 Zhu et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

Tumor-specific mitochondrial DNA variants are rarely detected in cell-free DNA.

The use of blood-circulating cell-free DNA (cfDNA) as a “liquid biopsy” in oncology is being explored for its potential as a cancer biomarker. Mitochondria contain their own circular genomic entity (mitochondrial DNA, mtDNA), up to even thousands of copies per cell. The mutation rate of mtDNA is several orders of magnitude higher than that of the nuclear DNA. Tumor-specific variants have been identified in tumors along the entire mtDNA, and their number varies among and within tumors. The high mtDNA copy number per cell and the high mtDNA mutation rate make it worthwhile to explore the potential of tumor-specific cf-mtDNA variants as cancer marker in the blood of cancer patients. We used single-molecule real-time (SMRT) sequencing to profile the entire mtDNA of 19 tissue specimens (primary tumor and/or metastatic sites, and tumor-adjacent normal tissue) and 9 cfDNA samples, originating from 8 cancer patients (5 breast, 3 colon). For each patient, tumor-specific mtDNA variants were detected and traced in cfDNA by SMRT sequencing and/or digital PCR to explore their feasibility as cancer biomarker. As a reference, we measured other blood-circulating biomarkers for these patients, including driver mutations in nuclear-encoded cfDNA and cancer-antigen levels or circulating tumor cells. Four of the 24 (17%) tumor-specific mtDNA variants were detected in cfDNA, however at much lower allele frequencies compared to mutations in nuclear-encoded driver genes in the same samples. Also, extensive heterogeneity was observed among the heteroplasmic mtDNA variants present in an individual. We conclude that there is limited value in tracing tumor-specific mtDNA variants in blood-circulating cfDNA with the current methods available. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019

Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea.

While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-a-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes, i.e., Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-a-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019

Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments.

Anaerobic strains affiliated with a novel order-level lineage of the Phycisphaerae class were retrieved from the suboxic zone of a hypersaline cyanobacterial mat and anoxic sediments of solar salterns. Genome sequences of five isolates were obtained and compared with metagenome-assembled genomes representing related uncultured bacteria from various anoxic aquatic environments. Gene content surveys suggest a strictly fermentative saccharolytic metabolism for members of this lineage, which could be confirmed by the phenotypic characterization of isolates. Genetic analyses indicate that the retrieved isolates do not have a canonical origin of DNA replication, but initiate chromosome replication at alternative sites possibly leading to an accelerated evolution. Further potential factors driving evolution and speciation within this clade include genome reduction by metabolic specialization and rearrangements of the genome by mobile genetic elements, which have a high prevalence in strains from hypersaline sediments and mats. Based on genetic and phenotypic data a distinct group of strictly anaerobic heterotrophic planctomycetes within the Phycisphaerae class could be assigned to a novel order that is represented by the proposed genus Sedimentisphaera gen. nov. comprising two novel species, S. salicampi gen. nov., sp. nov. and S. cyanobacteriorum gen. nov., sp. nov.© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019

A molecular window into the biology and epidemiology of Pneumocystis spp.

Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care. Copyright © 2018 American Society for Microbiology.


September 22, 2019

A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits.

Rose is the world’s most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line (‘HapOB’) from Rosa chinensis ‘Old Blush’ and generated a rose genome assembly anchored to seven pseudo-chromosomes (512?Mb with N50 of 3.4?Mb and 564 contigs). The length of 512?Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.