Menu
April 21, 2020

The major histocompatibility complex of Old World camelids: Class I and class I-related genes.

The genomic structure of the Major Histocompatibility Complex (MHC) region and variation in selected MHC class I related genes in Old World camels, Camelus bactrianus and Camelus dromedaries were studied. The overall genomic organization of the camel MHC region follows a general pattern observed in other mammalian species and individual MHC loci appear to be well conserved. Selected MHC class I genes B-67 and BL3-7 exhibited unexpectedly low variability, even when compared to other camel MHC class I related genes MR1 and MICA. Interspecific SNP and allele sharing are relatively common, and frequencies of heterozygotes are usually low. Such a low variation in a genomic region generally considered as one of the most polymorphic in vertebrate genomes is unusual. Evolutionary relationships between MHC class I related genes and their counterparts from other species seem to be rather complex. Often, they do not follow the general evolutionary history of the species concerned. Close evolutionary relationships of individual MHC class I loci between camels, humans and dogs were observed. Based on the results of this study and on our data on MHC class II genes, the extent and the pattern of polymorphism of the MHC region of Old World camelids differed from most mammalian groups studied so far. Camels thus seem to be an important model for our understanding of the role of genetic diversity in immune functions, especially in the context of unique features of their immunoglobulin and T-cell receptor genes. © 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


April 21, 2020

Genetic, structural, and functional diversity of low and high-affinity siderophores in strains of nitrogen fixing Azotobacter chroococcum.

To increase iron (Fe) bioavailability in surface soils, microbes secrete siderophores, chelators with widely varying Fe affinities. Strains of the soil bacterium Azotobacter chroococcum (AC), plant-growth promoting rhizobacteria used as agricultural inoculants, require high Fe concentrations for aerobic respiration and nitrogen fixation. Recently, A. chroococcum str. NCIMB 8003 was shown to synthesize three siderophore classes: (1) vibrioferrin, a low-affinity a-hydroxy carboxylate (pFe = 18.4), (2) amphibactins, high-affinity tris-hydroxamates, and (3) crochelin A, a high-affinity siderophore with mixed Fe-chelating groups (pFe = 23.9). The relevance and specific functions of these siderophores in AC strains remain unclear. We analyzed the genome and siderophores of a second AC strain, A. chroococcum str. B3, and found that it also produces vibrioferrin and amphibactins, but not crochelin A. Genome comparisons indicate that vibrioferrin production is a vertically inherited, conserved strategy for Fe uptake in A. chroococcum and other species of Azotobacter. Amphibactin and crochelin biosynthesis reflects a more complex evolutionary history, shaped by vertical gene transfer, gene gain and loss through recombination at a genomic hotspot. We found conserved patterns of low vs. high-affinity siderophore production across strains: the low-affinity vibrioferrin was produced by mildly Fe limited cultures. As cells became more severely Fe starved, vibrioferrin production decreased in favor of high-affinity amphibactins (str. B3, NCIMB 8003) and crochelin A (str. NCIMB 8003). Our results show the evolution of low and high-affinity siderophore families and conserved patterns for their production in response to Fe bioavailability in a common soil diazotroph.


April 21, 2020

Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii

Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker 7-2299 distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.


April 21, 2020

Ancestral Admixture Is the Main Determinant of Global Biodiversity in Fission Yeast.

Mutation and recombination are key evolutionary processes governing phenotypic variation and reproductive isolation. We here demonstrate that biodiversity within all globally known strains of Schizosaccharomyces pombe arose through admixture between two divergent ancestral lineages. Initial hybridization was inferred to have occurred ~20-60 sexual outcrossing generations ago consistent with recent, human-induced migration at the onset of intensified transcontinental trade. Species-wide heritable phenotypic variation was explained near-exclusively by strain-specific arrangements of alternating ancestry components with evidence for transgressive segregation. Reproductive compatibility between strains was likewise predicted by the degree of shared ancestry. To assess the genetic determinants of ancestry block distribution across the genome, we characterized the type, frequency, and position of structural genomic variation using nanopore and single-molecule real-time sequencing. Despite being associated with double-strand break initiation points, over 800 segregating structural variants exerted overall little influence on the introgression landscape or on reproductive compatibility between strains. In contrast, we found strong ancestry disequilibrium consistent with negative epistatic selection shaping genomic ancestry combinations during the course of hybridization. This study provides a detailed, experimentally tractable example that genomes of natural populations are mosaics reflecting different evolutionary histories. Exploiting genome-wide heterogeneity in the history of ancestral recombination and lineage-specific mutations sheds new light on the population history of S. pombe and highlights the importance of hybridization as a creative force in generating biodiversity. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020

Human Migration and the Spread of the Nematode Parasite Wuchereria bancrofti.

The human disease lymphatic filariasis causes the debilitating effects of elephantiasis and hydrocele. Lymphatic filariasis currently affects the lives of 90 million people in 52 countries. There are three nematodes that cause lymphatic filariasis, Brugia malayi, Brugia timori, and Wuchereria bancrofti, but 90% of all cases of lymphatic filariasis are caused solely by W. bancrofti (Wb). Here we use population genomics to reconstruct the probable route and timing of migration of Wb strains that currently infect Africa, Haiti, and Papua New Guinea (PNG). We used selective whole genome amplification to sequence 42 whole genomes of single Wb worms from populations in Haiti, Mali, Kenya, and PNG. Our results are consistent with a hypothesis of an Island Southeast Asia or East Asian origin of Wb. Our demographic models support divergence times that correlate with the migration of human populations. We hypothesize that PNG was infected at two separate times, first by the Melanesians and later by the migrating Austronesians. The migrating Austronesians also likely introduced Wb to Madagascar where later migrations spread it to continental Africa. From Africa, Wb spread to the New World during the transatlantic slave trade. Genome scans identified 17 genes that were highly differentiated among Wb populations. Among these are genes associated with human immune suppression, insecticide sensitivity, and proposed drug targets. Identifying the distribution of genetic diversity in Wb populations and selection forces acting on the genome will build a foundation to test future hypotheses and help predict response to current eradication efforts. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


April 21, 2020

Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation.

The genus Liriodendron belongs to the family Magnoliaceae, which resides within the magnoliids, an early diverging lineage of the Mesangiospermae. However, the phylogenetic relationship of magnoliids with eudicots and monocots has not been conclusively resolved and thus remains to be determined1-6. Liriodendron is a relict lineage from the Tertiary with two distinct species-one East Asian (L. chinense (Hemsley) Sargent) and one eastern North American (L. tulipifera Linn)-identified as a vicariad species pair. However, the genetic divergence and evolutionary trajectories of these species remain to be elucidated at the whole-genome level7. Here, we report the first de novo genome assembly of a plant in the Magnoliaceae, L. chinense. Phylogenetic analyses suggest that magnoliids are sister to the clade consisting of eudicots and monocots, with rapid diversification occurring in the common ancestor of these three lineages. Analyses of population genetic structure indicate that L. chinense has diverged into two lineages-the eastern and western groups-in China. While L. tulipifera in North America is genetically positioned between the two L. chinense groups, it is closer to the eastern group. This result is consistent with phenotypic observations that suggest that the eastern and western groups of China may have diverged long ago, possibly before the intercontinental differentiation between L. chinense and L. tulipifera. Genetic diversity analyses show that L. chinense has tenfold higher genetic diversity than L. tulipifera, suggesting that the complicated regions comprising east-west-orientated mountains and the Yangtze river basin (especially near 30°?N latitude) in East Asia offered more successful refugia than the south-north-orientated mountain valleys in eastern North America during the Quaternary glacial period.


April 21, 2020

Computational aspects underlying genome to phenome analysis in plants.

Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high-throughput plant phenotyping is becoming widely adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological breakthroughs are significantly accelerating quantitative trait locus (QTL) and causal gene identification, challenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standardize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we review the state of the art regarding genome assembly and the future potential of pangenomics in plant research. We also describe the necessity of standardizing and describing phenotypic studies using the Minimum Information About a Plant Phenotyping Experiment (MIAPPE) standard to enable the reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait-trait correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the golden future of machine learning and their potential in linking phenotypes to genomic features. © 2018 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.


April 21, 2020

Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice.

Fate mapping is a powerful genetic tool for linking stem or progenitor cells with their progeny, and hence for defining cell lineages in vivo. The resolution of fate mapping depends on the numbers of distinct markers that are introduced in the beginning into stem or progenitor cells; ideally, numbers should be sufficiently large to allow the tracing of output from individual cells. Highly diverse genetic barcodes can serve this purpose. We recently developed an endogenous genetic barcoding system, termed Polylox. In Polylox, random DNA recombination can be induced by transient activity of Cre recombinase in a 2.1-kb-long artificial recombination substrate that has been introduced into a defined locus in mice (Rosa26Polylox reporter mice). Here, we provide a step-by-step protocol for the use of Polylox, including barcode induction and estimation of induction efficiency, barcode retrieval with single-molecule real-time (SMRT) DNA sequencing followed by computational barcode identification, and the calculation of barcode-generation probabilities, which is key for estimations of single-cell labeling for a given number of stem cells. Thus, Polylox barcoding enables high-resolution fate mapping in essentially all tissues in mice for which inducible Cre driver lines are available. Alternative methods include ex vivo cell barcoding, inducible transposon insertion and CRISPR-Cas9-based barcoding; Polylox currently allows combining non-invasive and cell-type-specific labeling with high label diversity. The execution time of this protocol is ~2-3 weeks for experimental data generation and typically <2 d for computational Polylox decoding and downstream analysis.


April 21, 2020

Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates.

Ceftriaxone resistance in Neisseria gonorrhoeae is a major public health concern globally because a high-dose (1?g) injection of ceftriaxone is the only remaining option for empirical monotherapy of gonorrhoea. The ceftriaxone-resistant gonococcal strain FC428, cultured in Osaka in 2015, is suspected to have spread nationally and internationally. We describe the complete finished genomes of FC428 and two closely related isolates from Osaka in 2015, and examine the genomic epidemiology of these isolates plus three ceftriaxone-resistant gonococcal isolates from Osaka and Hyogo in 2016-17 and four ceftriaxone-resistant gonococcal isolates cultured in 2017 in Australia, Canada and Denmark.During 2015-17, we identified six ceftriaxone-resistant gonococcal isolates through our surveillance systems in Kyoto, Osaka and Hyogo. Antimicrobial susceptibility testing (six antimicrobials) was performed using Etest. Complete whole-genome sequences of the first three isolates (FC428, FC460 and FC498) from 2015 were obtained using PacBio RS II and Illumina MiSeq sequencing. The three complete genome sequences and draft genome sequences of the three additional Japanese (sequenced with Illumina MiSeq) and four international ceftriaxone-resistant isolates were compared.Detailed genomic analysis suggested that the Japanese isolates (FC428, FC460, FC498, KU16054, KM383 and KU17039) and the four international MLST ST1903 isolates from Australia, Canada and Denmark formed four linked subclades.Using detailed genomic analysis, we describe the clonal expansion of the ceftriaxone-resistant N. gonorrhoeae strain FC428, initially identified in 2015 in Japan, and closely related isolates. FC428 and its close relatives show some genomic diversity, suggesting multiple genetic subclades are already spreading internationally. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020

Evolution of Antibiotic Synthesis Gene Clusters in the Streptomyces globisporus TFH56, Isolated from Tomato Flower.

Streptomyces species are known to produce various bioactive metabolites that can prevent plant diseases. Previously, the Streptomyces strain TFH56 was found to inhibit the gray mold pathogen, Botrytis cinerea, in tomato flower. In this study, the genome sequence of strain TFH56 was acquired using the Pacific Biosciences RS II platform. Three linear sequences (7.67 Mbp in total) were obtained. Based on average nucleotide identity, strain TFH56 was classified as Streptomyces globisporus, which is consistent with the presence of a linear chromosome and linear plasmids. Moreover, as with other examples of S. globisporus, the genome of strain TFH56 included a caryolan-1-ol synthase gene, a conprimycin synthetic gene cluster, and a lidamycin synthetic gene cluster.Copyright © 2019 Cho, Kwak.


April 21, 2020

WGS of 1058 Enterococcus faecium from Copenhagen, Denmark, reveals rapid clonal expansion of vancomycin-resistant clone ST80 combined with widespread dissemination of a vanA-containing plasmid and acquisition of a heterogeneous accessory genome.

From 2012 to 2015, a sudden significant increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) was observed in the Capital Region of Denmark. Clonal relatedness of VREfm and vancomycin-susceptible E. faecium (VSEfm) was investigated, transmission events between hospitals were identified and the pan-genome and plasmids from the largest VREfm clonal group were characterized.WGS of 1058 E. faecium isolates was carried out on the Illumina platform to perform SNP analysis and to identify the pan-genome. One isolate was also sequenced on the PacBio platform to close the genome. Epidemiological data were collected from laboratory information systems.Phylogeny of 892 VREfm and 166 VSEfm revealed a polyclonal structure, with a single clonal group (ST80) accounting for 40% of the VREfm isolates. VREfm and VSEfm co-occurred within many clonal groups; however, no VSEfm were related to the dominant VREfm group. A similar vanA plasmid was identified in =99% of isolates belonging to the dominant group and 69% of the remaining VREfm. Ten plasmids were identified in the completed genome, and ~29% of this genome consisted of dispensable accessory genes. The size of the pan-genome among isolates in the dominant group was 5905 genes.Most probably, VREfm emerged owing to importation of a successful VREfm clone which rapidly transmitted to the majority of hospitals in the region whilst simultaneously disseminating a vanA plasmid to pre-existing VSEfm. Acquisition of a heterogeneous accessory genome may account for the success of this clone by facilitating adaptation to new environmental challenges. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020

Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus.

The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.


April 21, 2020

Plastid genomes from diverse glaucophyte genera reveal a largely conserved gene content and limited architectural diversity.

Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.


April 21, 2020

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots.

Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2?=?0.366; P?


April 21, 2020

High-Resolution Evolutionary Analysis of Within-Host Hepatitis C Virus Infection.

Despite recent breakthroughs in treatment of hepatitis C virus (HCV) infection, we have limited understanding of how virus diversity generated within individuals impacts the evolution and spread of HCV variants at the population scale. Addressing this gap is important for identifying the main sources of disease transmission and evaluating the risk of drug-resistance mutations emerging and disseminating in a population.We have undertaken a high-resolution analysis of HCV within-host evolution from 4 individuals coinfected with human immunodeficiency virus 1 (HIV-1). We used long-read, deep-sequenced data of full-length HCV envelope glycoprotein, longitudinally sampled from acute to chronic HCV infection to investigate the underlying viral population and evolutionary dynamics.We found statistical support for population structure maintaining the within-host HCV genetic diversity in 3 out of 4 individuals. We also report the first population genetic estimate of the within-host recombination rate for HCV (0.28 × 10-7 recombination/site/year), which is considerably lower than that estimated for HIV-1 and the overall nucleotide substitution rate estimated during HCV infection.Our findings indicate that population structure and strong genetic linkage shapes within-host HCV evolutionary dynamics. These results will guide the future investigation of potential HCV drug resistance adaptation during infection, and at the population scale. © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.