Menu
July 7, 2019

Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.


July 7, 2019

The challenges of implementing next generation sequencing across a large healthcare system, and the molecular epidemiology and antibiotic susceptibilities of carbapenemase-producing bacteria in the healthcare system of the U.S. Department of Defense.

We sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems.Prospective surveillance and system-wide implementation of NGS.288-hospital healthcare network.All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed. From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones.Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or government-funded public health laboratories are likely to encounter constraints and challenges as they implement NGS across their health systems. These include lack of standardized definitions and quality control metrics, limitations of short-read sequencing, insufficient bandwidth, and the current limited availability of very expensive and scarcely available sequencing platforms. Possible solutions and mitigations are also proposed.


July 7, 2019

Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida.

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n?=?14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.


July 7, 2019

Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation.

Variation in the presence or absence of transposable elements (TEs) is a major source of genetic variation between individuals. Here, we identified 23,095 TE presence/absence variants between 216 Arabidopsis accessions. Most TE variants were rare, and we find these rare variants associated with local extremes of gene expression and DNA methylation levels within the population. Of the common alleles identified, two thirds were not in linkage disequilibrium with nearby SNPs, implicating these variants as a source of novel genetic diversity. Many common TE variants were associated with significantly altered expression of nearby genes, and a major fraction of inter-accession DNA methylation differences were associated with nearby TE insertions. Overall, this demonstrates that TE variants are a rich source of genetic diversity that likely plays an important role in facilitating epigenomic and transcriptional differences between individuals, and indicates a strong genetic basis for epigenetic variation.


July 7, 2019

Assembly of long error-prone reads using de Bruijn graphs.

The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.


July 7, 2019

Selecting reads for haplotype assembly

Haplotype assembly or read-based phasing is the problem of reconstructing both haplotypes of a diploid genome from next-generation sequencing data. This problem is formalized as the Minimum Error Correction (MEC) problem and can be solved using algorithms such as WhatsHap. The runtime of WhatsHap is exponential in the maximum coverage, which is hence controlled in a pre-processing step that selects reads to be used for phasing. Here, we report on a heuristic algorithm designed to choose beneficial reads for phasing, in particular to increase the connectivity of the phased blocks and the number of correctly phased variants compared to the random selection previously employed in by WhatsHap. The algorithm we describe has been integrated into the WhatsHap software, which is available under MIT licence from https://bitbucket.org/whatshap/whatshap.


July 7, 2019

Resurgence of less-studied smut fungi as models of phytopathogenesis in the -omics era.

The smut fungi form a large, diverse, and non-monophyletic group of plant pathogens that have long served as both important pests of human agriculture but also as fertile organisms of scientific investigation. As modern techniques of molecular genetic analysis became available, many previously-studied species that proved refractive to these techniques fell by the wayside to become neglected. Now, as the advent of rapid and affordable next-generation sequencing provides genomic and transcriptomic resources for even these “forgotten” fungi, several species are making a come-back and retaking prominent places in phytopathogenic research. In this review, we highlight several of these smut fungi, with special emphasis on Microbotryum lychnidis-dioicae, an anther smut, whose molecular genetic tools have finally begun to catch up with its historical importance in classical genetics and now provide mechanistic insights for ecological studies, evolution of host/pathogen interaction, and investigations of emerging infectious disease.


July 7, 2019

Genome sequence of the multiantibiotic-resistant Enterococcus faecium strain C68 and insights on the pLRM23 colonization plasmid.

Enterococcus faecium infections are a rising concern in hospital settings. Vancomycin-resistant enterococci colonize the gastrointestinal tract and replace nonresistant strains, complicating the treatment of debilitated patients. Here, we present a polished genome of the multiantibiotic-resistant strain C68, which was obtained as a clinical isolate and is a useful experimental strain. Copyright © 2016 García-Solache and Rice.


July 7, 2019

Complete genome sequence of Enterococcus faecium ATCC 700221.

We report the complete genome sequence of a vancomycin-resistant isolate of Enterococcus faecium derived from human feces. The genome comprises one chromosome of 2.9 Mb and three plasmids. The strain harbors a plasmid-borne vanA-type vancomycin resistance locus and is a member of multilocus sequencing type (MLST) cluster ST-17. Copyright © 2016 McKenney et al.


July 7, 2019

High-quality draft genomes from Thermus caliditerrae YIM 77777 and T. tengchongensis YIM 77401, isolates from Tengchong, China.

The draft genomes of Thermus  tengchongensis YIM 77401 and T. caliditerrae YIM 77777 are 2,562,314 and 2,218,114 bp and encode 2,726 and 2,305 predicted genes, respectively. Gene content and growth experiments demonstrate broad metabolic capacity, including starch hydrolysis, thiosulfate oxidation, arsenite oxidation, incomplete denitrification, and polysulfide reduction. Copyright © 2016 Mefferd et al.


July 7, 2019

Complete genome sequence of pseudorabies virus reference strain NIA3 using single-molecule real-time sequencing.

Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease in pigs. PRV strains are also used as model organisms for the study of alphaherpesvirus biology or for neuronal pathway studies. We present here the complete genome of the virulent wild-type PRV reference strain NIA3, determined by single-molecule real-time sequencing. Copyright © 2016 Mathijs et al.


July 7, 2019

Genome sequence of Propionibacterium acidipropionici ATCC 55737.

Propionibacterium acidipropionici produces propionic acid as its main fermentation product. Traditionally derived from fossil fuels, environmental and sustainable issues have revived the interest in producing propionic acid using biological resources. Here, we present the closed sequence of Propionibacterium acidipropionici ATCC 55737, an efficient propionic acid producer. Copyright © 2016 Luna-Flores et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.