Menu
July 7, 2019

Genome sequence of Saccharomyces cerevisiae strain Kagoshima No. 2, used for Brewing the Japanese distilled spirit Shochu.

Here, we report a draft genome sequence of Saccharomyces cerevisiae strain Kagoshima no. 2, which is used for brewing shochu, a traditional distilled spirit in Japan. The genome data will facilitate an understanding of the evolutional traits and genetic background related to the characteristic features of strain Kagoshima no. 2. Copyright © 2017 Mori et al.


July 7, 2019

Complete genome sequence of super biofilm-elaborating Staphylococcus aureus isolated in Japan.

Staphylococcus aureus JP080, previously named TF2758, is a clinical isolate from an atheroma and a super biofilm-elaborating strain whose biofilm elaboration is dependent solely on polysaccharide poly-N-acetylglucosamine/polysaccharide intercellular adhesin (PNAG/PIA). Here, we report the complete genome sequence of strain JP080, which consists of one chromosome and one circular plasmid. Copyright © 2017 Yu et al.


July 7, 2019

CTX-M-15-producing Shewanella sp. clinical isolate expressing OXA-535, a chromosome-encoded OXA-48 variant, putative progenitor of the plasmid-encoded OXA-436.

Shewanella spp. constitute a reservoir of antibiotic resistance determinants. In a bile sample, we have identified three Extended Spectrum ß-lactamase (ESBL)-producing bacteria (Escherichia coli, Klebsiella pneumoniae and Shewanella sp. JAB-1) isolated from a child suffering from cholangitis. Our objectives were to characterize the genome and the resistome of the first ESBL-producing isolate of the genus Shewanella and determine whether plasmidic exchange occurred between the three-bacterial species. Bacterial isolates were characterized using MALDI-TOF, standard biochemical tools and antimicrobial susceptibility testing. Shewanella sp JAB-1 and ESBL gene-carrying plasmids were characterized using PacBio and Illumina whole genome sequencing, respectively. The Shewanella sp JAB-1 chromosome-encoded OXA-48-variant was cloned and functionally characterized.Whole genome sequencing (WGS) of the Shewanella sp. clinical isolate JAB-1 revealed the presence of a 193-kb plasmid belonging to IncA/C incompatibility group and harboring two ESBL genes: blaCTX-M-15 and blaSHV-2ablaCTX-M-15 gene carrying plasmids belonging to IncY and IncR incompatibility groups were also found in the E. coli and K. pneumoniae isolates from the same patient, respectively. Comparison of the blaCTX-M-15 genetic environment indicated the independent origin of these plasmids and dismissed in vivo transfers. Furthermore, characterization of the resistome of Shewanella sp. JAB-1 revealed the presence of a chromosome-encoded blaOXA-535 gene, likely the progenitor of the plasmid-encoded blaOXA-436 gene, a novel blaOXA-48-like gene. Expression of blaOXA-535 in E. coli showed the carbapenem-hydrolyzing activity of OXA-535. The production of OXA-535 in Shewanella sp. JAB-1 could be evidenced using molecular and immuno-enzymatic tests, but not with biochemical tests that monitor carbapenem-hydrolysis. In this study, we have identified a CTX-M-15-producing Shewanella species that was responsible of an hepatobiliary infection and that is likely the progenitor of OXA-436, a novel plasmid-encoded OXA-48-like class D carbapenemases. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Spontaneous loss of virulence in natural populations of Listeria monocytogenes.

The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA(-)/LLO(-)) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA(-)/LLO(-) mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen. Copyright © 2017 Maury et al.


July 7, 2019

Gene acquisition by a distinct phyletic group within Streptococcus pneumoniae promotes adhesion to the ocular epithelium.

Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this study, we sequenced the genomes of six pneumococcal strains isolated from eye infections. The conjunctivitis isolates are grouped in a distinct phyletic group together with a subset of nasopharyngeal isolates. The keratitis (infection of the cornea) and endophthalmitis (infection of the vitreous body) isolates are grouped with the remainder of pneumococcal strains. Phenotypic characterization is consistent with morphological differences associated with the distinct phyletic group. Specifically, isolates from the distinct phyletic group form aggregates in planktonic cultures and chain-like structures in biofilms grown on abiotic surfaces. To begin to investigate the association between genotype and epidemiology, we focused on a predicted surface-exposed adhesin (SspB) encoded exclusively by this distinct phyletic group. Phylogenetic analysis of the gene encoding SspB in the context of a streptococcal species tree suggests that sspB was acquired by lateral gene transfer from Streptococcus suis. Furthermore, an sspB deletion mutant displays decreased adherence to cultured cells from the ocular epithelium compared to the isogenic wild-type and complemented strains. Together these findings suggest that acquisition of genes from outside the species has contributed to pneumococcal tissue tropism by enhancing the ability of a subset of strains to infect the ocular epithelium causing conjunctivitis. IMPORTANCE Changes in the gene content of pathogens can modify their ability to colonize and/or survive in different body sites in the human host. In this study, we investigate a gene acquisition event and its role in the pathogenesis of Streptococccus pneumoniae (pneumococcus). Our findings suggest that the gene encoding the predicted surface protein SspB has been transferred from Streptococcus suis (a distantly related streptococcal species) into a distinct set of pneumococcal strains. This group of strains distinguishes itself from the remainder of pneumococcal strains by extensive differences in genomic composition and by the ability to cause conjunctivitis. We find that the presence of sspB increases adherence of pneumococcus to the ocular epithelium. Thus, our data support the hypothesis that a subset of pneumococcal strains has gained genes from neighboring species that enhance their ability to colonize the epithelium of the eye, thus expanding into a new niche.


July 7, 2019

Whole-genome sequence of the fruiting myxobacterium Cystobacter fuscus DSM 52655.

Among myxobacteria, the genus Cystobacter is known not only for fruiting body formation but also for formation of secondary metabolites, such as cystobactamids and cystothiazols. Here, we present the complete genome sequence of the Cystobacter fuscus strain DSM 52655, which comprises 12,349,744 bp and 9,836 putative protein-coding sequences. Copyright © 2017 Treuner-Lange et al.


July 7, 2019

Draft nuclear genome sequence of the halophilic and beta-carotene-accumulating green alga Dunaliella salina strain CCAP19/18.

The halotolerant alga Dunaliella salina is a model for stress tolerance and is used commercially for production of beta-carotene (=pro-vitamin A). The presented draft genome of the genuine strain CCAP19/18 will allow investigations into metabolic processes involved in regulation of stress responses, including carotenogenesis and adaptations to life in high-salinity environments. Copyright © 2017 Polle et al.


July 7, 2019

Complete genome sequence of Mesorhizobium sophorae ICMP 19535T, a highly specific, nitrogen-fixing symbiont of New Zealand endemic Sophora spp.

We report here the complete genome sequence of Mesorhizobium sophorae ICMP 19535(T) This strain was isolated from Sophora microphylla root nodules and can nodulate and fix nitrogen with this host and also with Sophora prostrata, Sophora longicarinata, and Clianthus puniceus The genome consists of 8.05 Mb. Copyright © 2017 De Meyer et al.


July 7, 2019

Complete genome sequence of Desulfovibrio desulfuricans strain G11, a model sulfate-reducing, hydrogenotrophic, and syntrophic partner organism.

Here, we report the draft genome of the Gram-negative, sulfate-reducing bacterium Desulfovibrio desulfuricans strain G11. Isolated from a rumen fluid enrichment, this culture has been a model syntrophic partner due to its metabolic flexibility. The assembly yielded a single circular chromosome of 3,414,943 bp and a 57% G+C content. Copyright © 2017 Sheik et al.


July 7, 2019

Complete genome sequence of Eubacterium hallii strain L2-7.

The complete genome sequence of Eubacterium hallii strain L2-7 is reported here. This intestinal strain produces butyrate from glucose as well as lactate when acetate is provided in the growth medium. In addition, strain L2-7 has been shown to improve insulin sensitivity in db/db mice, indicating its application potential. Copyright © 2017 Shetty et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.