Menu
September 22, 2019  |  

Ginseng Genome Database: an open-access platform for genomics of Panax ginseng.

The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb.The first draft genome sequences of P. ginseng cultivar “Chunpoong” were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page.This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.


September 22, 2019  |  

Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis)

The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.


September 22, 2019  |  

The complete chloroplast genome of Chrysanthemum boreale (Asteraceae)

Chrysanthemum boreale is a perennial plant in the Asteraceae family that is native to eastern Asia and has both ornamental and herbal uses. Here, we determined the complete chloroplast genome sequence for C. boreale using long-read sequencing. The chloroplast genome was 151,012?bp and consisted of a large single copy (LSC) region (82,817?bp), a small single copy (SSC) region (18,281?bp) and two inverted repeats (IRs) (24,957?bp). It was predicted to contain 131 genes, including 87 protein-coding genes, eight rRNAs and 46 tRNAs. Phylogenetic analysis of chloroplast genomes clustered C. boreale with other Chrysanthemum and Asteraceae species.


September 22, 2019  |  

Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality.

Tea, one of the world’s most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ~0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ~30 to 40 and ~90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat.

Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.


September 22, 2019  |  

Genomic analyses of unique carbohydrate and phytohormone metabolism in the macroalga Gracilariopsis lemaneiformis (Rhodophyta).

Red algae are economically valuable for food and in industry. However, their genomic information is limited, and the genomic data of only a few species of red algae have been sequenced and deposited recently. In this study, we annotated a draft genome of the macroalga Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta).The entire 88.98 Mb genome of Gp. lemaneiformis 981 was generated from 13,825 scaffolds (=500 bp) with an N50 length of 30,590 bp, accounting for approximately 91% of this algal genome. A total of 38.73 Mb of scaffold sequences were repetitive, and 9281 protein-coding genes were predicted. A phylogenomic analysis of 20 genomes revealed the relationship among the Chromalveolata, Rhodophyta, Chlorophyta and higher plants. Homology analysis indicated phylogenetic proximity between Gp. lemaneiformis and Chondrus crispus. The number of enzymes related to the metabolism of carbohydrates, including agar, glycoside hydrolases, glycosyltransferases, was abundant. In addition, signaling pathways associated with phytohormones such as auxin, salicylic acid and jasmonates are reported for the first time for this alga.We sequenced and analyzed a draft genome of the red alga Gp. lemaneiformis, and revealed its carbohydrate metabolism and phytohormone signaling characteristics. This work will be helpful in research on the functional and comparative genomics of the order Gracilariales and will enrich the genomic information on marine algae.


September 22, 2019  |  

Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits.

NAC proteins are a family of transcription factors which have a variety of important regulatory roles in plants. They present a very well conserved group of NAC subdomains in the N-terminal region and a highly variable domain at the C-terminus. Currently, knowledge concerning NAC family in the strawberry plant remains very limited. In this work, we analyzed the NAC family of Fragaria vesca, and a total of 112 NAC proteins were identified after we curated the annotations from the version 4.0.a1 genome. They were placed into the ligation groups (pseudo-chromosomes) and described its physicochemical and genetic features. A microarray transcriptomic analysis showed six of them expressed during the development and ripening of the Fragaria x ananassa fruit. Their expression patterns were studied in fruit (receptacle and achenes) in different stages of development and in vegetative tissues. Also, the expression level under different hormonal treatments (auxins, ABA) and drought stress was investigated. In addition, they were clustered with other NAC transcription factor with known function related to growth and development, senescence, fruit ripening, stress response, and secondary cell wall and vascular development. Our results indicate that these six strawberry NAC proteins could play different important regulatory roles in the process of development and ripening of the fruit, providing the basis for further functional studies and the selection for NAC candidates suitable for biotechnological applications.


September 22, 2019  |  

Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii.

Prokaryotes benefit from having accessory genes, but it is unclear how accessory genes can be linked with the core regulatory network when developing adaptations to new niches. Here we determined hierarchical core/accessory subsets in the multipartite pangenome (composed of genes from the chromosome, chromid and plasmids) of the soybean microsymbiont Sinorhizobium fredii by comparing twelve Sinorhizobium genomes. Transcriptomes of two S. fredii strains at mid-log and stationary growth phases and in symbiotic conditions were obtained. The average level of gene expression, variation of expression between different conditions, and gene connectivity within the co-expression network were positively correlated with the gene conservation level from strain-specific accessory genes to genus core. Condition-dependent transcriptomes exhibited adaptive transcriptional changes in pangenome subsets shared by the two strains, while strain-dependent transcriptomes were enriched with accessory genes on the chromid. Proportionally more chromid genes than plasmid genes were co-expressed with chromosomal genes, while plasmid genes had a higher within-replicon connectivity in expression than chromid ones. However, key nitrogen fixation genes on the symbiosis plasmid were characterized by high connectivity in both within- and between-replicon analyses. Among those genes with host-specific upregulation patterns, chromosomal znu and mdt operons, encoding a conserved high-affinity zinc transporter and an accessory multi-drug efflux system, respectively, were experimentally demonstrated to be involved in host-specific symbiotic adaptation. These findings highlight the importance of integrative regulation of hierarchical core/accessory components in the multipartite genome of bacteria during niche adaptation and in shaping the prokaryotic pangenome in the long run.


September 22, 2019  |  

Identification of a leucine-rich repeat receptor-like serine/threonine-protein kinase as a candidate gene for Rvi12 (Vb)-based apple scab resistance

Apple scab caused by Venturia inaequalis is the most important fungal disease of apples (Malus × domestica). Currently, the disease is controlled by up to 15 fungicide applications to the crop per year. Resistant apple cultivars will help promote the sustainable control of scab in commercial orchards. The breakdown of the Rvi6 (Vf) major-gene based resistance, the most used resistance gene in apple breeding, prompted the identification and characterization of new scab resistance genes. By using a large segregating population, the Rvi12 scab resistance gene was previously mapped to a genetic location flanked by molecular markers SNP_23.599 and SNP_24.482. Starting from these markers, utilizing chromosome walking of a Hansen’s baccata #2 (HB2) BAC-library; a single BAC clone spanning the Rvi12 interval was identified. Following Pacific Biosciences (PacBio) RS II sequencing and the use of the hierarchical genome assembly process (HGAP) assembly of the BAC clone sequence, the Rvi12 resistance locus was localized to a 62.3-kb genomic region. Gene prediction and in silico characterization identified a single candidate resistance gene. The gene, named here as Rvi12_Cd5, belongs to the LRR receptor-like serine/threonine-protein kinase family. In silico comparison of the resistance allele from HB2 and the susceptible allele from Golden Delicious (GD) identified the presence of an additional intron in the HB2 allele. Conserved domain analysis identified the presence of four additional LRR motifs in the susceptible allele compared to the resistance allele. The constitutive expression of Rvi12_Cd5 in HB2, together with its structural similarity to known resistance genes, makes it the most likely candidate for Rvi12 scab resistance in apple.


September 22, 2019  |  

The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis.

Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat.

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease of wheat throughout the world. One of the most important environmental-friendly and economical methods to reduce wheat loss caused by Bgt is to develop highly resistant varieties (Kuraparthy et al., 2007). Pm21 from the wild species Haynaldia villosa (also known as Dasypyrum villosum) confers high resistance to Bgt in wheat throughout all growth stages. It has now become one of the most highly effective genetic loci introgressed into wheat from wild species, and the commercial varieties harboring Pm21 have been widely used in wheat production with more than 4 million hectares in China.


September 22, 2019  |  

A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight.

Fusarium head blight (FHB) mainly caused by F. graminearum, always brings serious damage to wheat production worldwide. In this study, we found that strain LM2303 had strong antagonist activity against F. graminearum and significantly reduced disease severity of FHB with the control efficiency of 72.3% under field conditions. To gain a comprehensive understanding of the biocontrol potential of strain LM2303 against FHB, an integrated approach of genome mining and chemical analysis was employed. The whole genome of strain LM2303 was obtained and analyzed, showing the largest number of genes/gene clusters associated with biocontrol functions as compared with the known biocontrol strains (FZB42, M75, CAU B946). And strain LM2303 was accurately determined as a member of the B. velezensis clade using the phylogenomic analysis of single-copy core genes. Through genome mining, 13 biosynthetic gene clusters(BGCs) encoding secondary metabolites with biocontrol functions were identified, which were further confirmed through chemical analyses such as UHPLC-ESI-MS, including three antifungal metabolites (fengycin B, iturin A, and surfactin A), eight antibacterial metabolites (surfactin A, butirosin, plantazolicin and hydrolyzed plantazolicin, kijanimicin, bacilysin, difficidin, bacillaene A and bacillaene B, 7-o-malonyl macrolactin A and 7-o-succinyl macrolactin A), the siderophore bacillibactin, molybdenum cofactor and teichuronic acid. In addition, genes/gene clusters involved in plant colonization, plant growth promotion and induced systemic resistance were also found and analyzed, along with the corresponding metabolites. Finally, four different mechanisms of strain LM2303 involved in the biocontrol of FHB were putatively obtained. This work provides better insights into a mechanistic understanding of strain LM2303 in control of FHB, reinforcing the higher potential of this strain as a powerful biocontrol strain agent (BCA) for FHB control. The results also provide scientific reference and comparison for other biocontrol strains.


September 22, 2019  |  

Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads

Due to the large number of repetitive sequences in complex eukaryotic genomes, fragmented and incompletely assembled genomes lose value as reference sequences, often due to short contigs that cannot be anchored or mispositioned onto chromosomes. Here we report a novel method Highly Efficient Repeat Assembly (HERA), which includes a new concept called a connection graph as well as algorithms for constructing the graph. HERA resolves repeats at high efficiency with single-molecule sequencing data, and enables the assembly of chromosome-scale contigs by further integrating genome maps and Hi-C data. We tested HERA with the genomes of rice R498, maize B73, human HX1 and Tartary buckwheat Pinku1. HERA can correctly assemble most of the tandemly repetitive sequences in rice using single-molecule sequencing data only. Using the same maize and human sequencing data published by Jiao et al. (2017) and Shi et al. (2016), respectively, we dramatically improved on the sequence contiguity compared with the published assemblies, increasing the contig N50 from 1.3 Mb to 61.2 Mb in maize B73 assembly and from 8.3 Mb to 54.4 Mb in human HX1 assembly with HERA. We provided a high-quality maize reference genome with 96.9% of the gaps filled (only 76 gaps left) and several incorrectly positioned sequences fixed compared with the B73 RefGen_v4 assembly. Comparisons between the HERA assembly of HX1 and the human GRCh38 reference genome showed that many gaps in GRCh38 could be filled, and that GRCh38 contained some potential errors that could be fixed. We assembled the Pinku1 genome into 12 scaffolds with a contig N50 size of 27.85 Mb. HERA serves as a new genome assembly/phasing method to generate high quality sequences for complex genomes and as a curation tool to improve the contiguity and completeness of existing reference genomes, including the correction of assembly errors in repetitive regions.


September 22, 2019  |  

Homogenization of sub-genome secretome gene expression patterns in the allodiploid fungus Verticillium longisporum

Allopolyploidization, genome duplication through interspecific hybridization, is an important evolutionary mechanism that can enable organisms to adapt to environmental changes or stresses. The increased adaptive potential of allopolyploids can be particularly relevant for plant pathogens in their ongoing quest for host immune response evasion. To this end, plant pathogens secrete a plethora of molecules that enable host colonization. Allodiploidization has resulted in the new plant pathogen Verticillium longisporum that infects different hosts than haploid Verticillium species. To reveal the impact of allodiploidization on plant pathogen evolution, we studied the genome and transcriptome dynamics of V. longisporum using next-generation sequencing. V. longisporum genome evolution is characterized by extensive chromosomal rearrangements, between as well as within parental chromosome sets, leading to a mosaic genome structure. In comparison to haploid Verticillium species, V. longisporum genes display stronger signs of positive selection. The expression patterns of the two sub-genomes show remarkable resemblance, suggesting that the parental gene expression patterns homogenized upon hybridization. Moreover, whereas V. longisporum genes encoding secreted proteins frequently display differential expression between the parental sub-genomes in culture medium, expression patterns homogenize upon plant colonization. Collectively, our results illustrate of the adaptive potential of allodiploidy mediated by the interplay of two sub-genomes. Author summary Hybridization followed by whole-genome duplication, so-called allopolyploidization, provides genomic flexibility that is beneficial for survival under stressful conditions or invasiveness into new habitats. Allopolyploidization has mainly been studied in plants, but also occurs in other organisms, including fungi. Verticillium longisporum, an emerging fungal pathogen on brassicaceous plants, arose by allodiploidization between two Verticillium spp. We used comparative genomics to reveal the plastic nature of the V. longisporum genomes, showing that parental chromosome sets recombined extensively, resulting in a mosaic genome pattern. Furthermore, we show that non-synonymous substitutions frequently occurred in V. longisporum. Moreover, we reveal that expression patterns of genes encoding secreted proteins homogenized between the V. longisporum sub-genomes upon plant colonization. In conclusion, our results illustrate the large adaptive potential upon genome hybridization for fungi mediated by genomic plasticity and interaction between sub-genomes.


September 22, 2019  |  

De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution

The wild relatives of rice have adapted to different ecological environments and constitute a useful reservoir of agronomic traits for genetic improvement. Here we present the ~777?Mb de novo assembled genome sequence of Oryza granulata. Recent bursts of long-terminal repeat retrotransposons, especially RIRE2, led to a rapid twofold increase in genome size after O. granulata speciation. Universal centromeric tandem repeats are absent within its centromeres, while gypsy-type LTRs constitute the main centromere-specific repetitive elements. A total of 40,116 protein-coding genes were predicted in O. granulata, which is close to that of Oryza sativa. Both the copy number and function of genes involved in photosynthesis and energy production have undergone positive selection during the evolution of O. granulata, which might have facilitated its adaptation to the low light habitats. Together, our findings reveal the rapid genome expansion, distinctive centromere organization, and adaptive evolution of O. granulata.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.