September 22, 2019  |  

Homogenization of sub-genome secretome gene expression patterns in the allodiploid fungus Verticillium longisporum

Authors: Depotter, Jasper and van Beveren, Fabian and Rodriguez-Moreno, Luis and van den Berg, Grardy and Wood, Thomas and Thomma, Bart and Seidl, Michael

Allopolyploidization, genome duplication through interspecific hybridization, is an important evolutionary mechanism that can enable organisms to adapt to environmental changes or stresses. The increased adaptive potential of allopolyploids can be particularly relevant for plant pathogens in their ongoing quest for host immune response evasion. To this end, plant pathogens secrete a plethora of molecules that enable host colonization. Allodiploidization has resulted in the new plant pathogen Verticillium longisporum that infects different hosts than haploid Verticillium species. To reveal the impact of allodiploidization on plant pathogen evolution, we studied the genome and transcriptome dynamics of V. longisporum using next-generation sequencing. V. longisporum genome evolution is characterized by extensive chromosomal rearrangements, between as well as within parental chromosome sets, leading to a mosaic genome structure. In comparison to haploid Verticillium species, V. longisporum genes display stronger signs of positive selection. The expression patterns of the two sub-genomes show remarkable resemblance, suggesting that the parental gene expression patterns homogenized upon hybridization. Moreover, whereas V. longisporum genes encoding secreted proteins frequently display differential expression between the parental sub-genomes in culture medium, expression patterns homogenize upon plant colonization. Collectively, our results illustrate of the adaptive potential of allodiploidy mediated by the interplay of two sub-genomes. Author summary Hybridization followed by whole-genome duplication, so-called allopolyploidization, provides genomic flexibility that is beneficial for survival under stressful conditions or invasiveness into new habitats. Allopolyploidization has mainly been studied in plants, but also occurs in other organisms, including fungi. Verticillium longisporum, an emerging fungal pathogen on brassicaceous plants, arose by allodiploidization between two Verticillium spp. We used comparative genomics to reveal the plastic nature of the V. longisporum genomes, showing that parental chromosome sets recombined extensively, resulting in a mosaic genome pattern. Furthermore, we show that non-synonymous substitutions frequently occurred in V. longisporum. Moreover, we reveal that expression patterns of genes encoding secreted proteins homogenized between the V. longisporum sub-genomes upon plant colonization. In conclusion, our results illustrate the large adaptive potential upon genome hybridization for fungi mediated by genomic plasticity and interaction between sub-genomes.

Journal: BioRxiv
DOI: 10.1101/341636
Year: 2018

Read Publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.