Menu
July 7, 2019  |  

Variable presence of the inverted repeat and plastome stability in Erodium.

Several unrelated lineages such as plastids, viruses and plasmids, have converged on quadripartite genomes of similar size with large and small single copy regions and a large inverted repeat (IR). Except for Erodium (Geraniaceae), saguaro cactus and some legumes, the plastomes of all photosynthetic angiosperms display this structure. The functional significance of the IR is not understood and Erodium provides a system to examine the role of the IR in the long-term stability of these genomes. We compared the degree of genomic rearrangement in plastomes of Erodium that differ in the presence and absence of the IR.We sequenced 17 new Erodium plastomes. Using 454, Illumina, PacBio and Sanger sequences, 16 genomes were assembled and categorized along with one incomplete and two previously published Erodium plastomes. We conducted phylogenetic analyses among these species using a dataset of 19 protein-coding genes and determined if significantly higher evolutionary rates had caused the long branch seen previously in phylogenetic reconstructions within the genus. Bioinformatic comparisons were also performed to evaluate plastome evolution across the genus.Erodium plastomes fell into four types (Type 1-4) that differ in their substitution rates, short dispersed repeat content and degree of genomic rearrangement, gene and intron content and GC content. Type 4 plastomes had significantly higher rates of synonymous substitutions (dS) for all genes and for 14 of the 19 genes non-synonymous substitutions (dN) were significantly accelerated. We evaluated the evidence for a single IR loss in Erodium and in doing so discovered that Type 4 plastomes contain a novel IR.The presence or absence of the IR does not affect plastome stability in Erodium. Rather, the overall repeat content shows a negative correlation with genome stability, a pattern in agreement with other angiosperm groups and recent findings on genome stability in bacterial endosymbionts.© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution.

Eucommia ulmoides is an important traditional medicinal plant that is used for the production of locative Eucommia rubber. In this study, the complete chloroplast (cp) genome sequence of E. ulmoides was obtained by total DNA sequencing; this is the first cp genome sequence of the order Garryales. The cp genome of E. ulmoides was 163,341 bp long and included a pair of inverted repeat (IR) regions (31,300 bp), one large single copy (LSC) region (86,592 bp), and one small single copy (SSC) region (14,149 bp). The genome structure and GC content were similar to those of typical angiosperm cp genomes and contained 115 unique genes, including 80 protein-coding genes, 31 transfer RNA (tRNAs), and four ribosomal RNA (rRNAs). Compared with the entire cp genome sequence, three unique genome rearrangements were observed in the LSC region. Moreover, compared with the Sesamum and Nicotiana cp genomes, E. ulmoides contained no indels in the IR regions, and variable regions were identified in noncoding regions. The E. ulmoides cp genome showed extreme expansion at the IR/SSC boundary owing to the integration of an additional complete gene, ycf1. Twenty-nine simple sequence repeats (SSRs) were identified in the E. ulmoides cp genome. In addition, 36 protein-coding genes were used for phylogenetic inference, supporting a sister relationship between E. ulmoides and Aucuba, which belongs to Euasterids I. In summary, we described the complete cp genome sequence of E. ulmoides; this information will be useful for phylogenetic and evolutionary studies.


July 7, 2019  |  

The kiwifruit genome

The whole-genome sequence of Actinidia chinensis var. chinensis ‘Hongyang’ was published in 2013 and was represented as the first publicly available Ericales genome sequence. Publication in 2015 of an improved linkage map for A. chinensis and interspecific comparison analyses coupled with the availability of a second whole-genome sequence of a genotype closely related to ‘Hongyang’ have enabled the kiwifruit research community to improve the existing whole-genome sequence. This chapter describes the original genome sequence and steps towards its improvement.


July 7, 2019  |  

Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


July 7, 2019  |  

1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana.

Arabidopsis thaliana serves as a model organism for the study of fundamental physiological, cellular, and molecular processes. It has also greatly advanced our understanding of intraspecific genome variation. We present a detailed map of variation in 1,135 high-quality re-sequenced natural inbred lines representing the native Eurasian and North African range and recently colonized North America. We identify relict populations that continue to inhabit ancestral habitats, primarily in the Iberian Peninsula. They have mixed with a lineage that has spread to northern latitudes from an unknown glacial refugium and is now found in a much broader spectrum of habitats. Insights into the history of the species and the fine-scale distribution of genetic diversity provide the basis for full exploitation of A. thaliana natural variation through integration of genomes and epigenomes with molecular and non-molecular phenotypes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

The rubber tree genome shows expansion of gene family associated with rubber biosynthesis.

Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55?Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis’s capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.


July 7, 2019  |  

Chloroplast genomes: diversity, evolution, and applications in genetic engineering.

Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.


July 7, 2019  |  

The draft genome of MD-2 pineapple using hybrid error correction of long reads.

The introduction of the elite pineapple variety, MD-2, has caused a significant market shift in the pineapple industry. Better productivity, overall increased in fruit quality and taste, resilience to chilled storage and resistance to internal browning are among the key advantages of the MD-2 as compared with its previous predecessor, the Smooth Cayenne. Here, we present the genome sequence of the MD-2 pineapple (Ananas comosus (L.) Merr.) by using the hybrid sequencing technology from two highly reputable platforms, i.e. the PacBio long sequencing reads and the accurate Illumina short reads. Our draft genome achieved 99.6% genome coverage with 27,017 predicted protein-coding genes while 45.21% of the genome was identified as repetitive elements. Furthermore, differential expression of ripening RNASeq library of pineapple fruits revealed ethylene-related transcripts, believed to be involved in regulating the process of non-climacteric pineapple fruit ripening. The MD-2 pineapple draft genome serves as an example of how a complex heterozygous genome is amenable to whole genome sequencing by using a hybrid technology that is both economical and accurate. The genome will make genomic applications more feasible as a medium to understand complex biological processes specific to pineapple. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316.

We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316.


July 7, 2019  |  

Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties.

Chenopodium quinoa Willd. (quinoa) originated from the Andean region of South America, and is a pseudocereal crop of the Amaranthaceae family. Quinoa is emerging as an important crop with the potential to contribute to food security worldwide and is considered to be an optimal food source for astronauts, due to its outstanding nutritional profile and ability to tolerate stressful environments. Furthermore, plant pathologists use quinoa as a representative diagnostic host to identify virus species. However, molecular analysis of quinoa is limited by its genetic heterogeneity due to outcrossing and its genome complexity derived from allotetraploidy. To overcome these obstacles, we established the inbred and standard quinoa accession Kd that enables rigorous molecular analysis, and presented the draft genome sequence of Kd, using an optimized combination of high-throughput next generation sequencing on the Illumina Hiseq 2500 and PacBio RS II sequencers. The de novo genome assembly contained 25 k scaffolds consisting of 1 Gbp with N50 length of 86 kbp. Based on these data, we constructed the free-access Quinoa Genome DataBase (QGDB). Thus, these findings provide insights into the mechanisms underlying agronomically important traits of quinoa and the effect of allotetraploidy on genome evolution. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Challenges, solutions, and quality metrics of personal genome assembly in advancing precision medicine.

Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune-response, tailoring drug therapy and detecting tumors. We believe the precision medicine would largely benefit from bioinformatics solutions, particularly for personal genome assembly.


July 7, 2019  |  

The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads.

Sugarcane accounts for a large portion of the worlds sugar production. Modern commercial cultivars are complex hybrids of S. officinarum and several other Saccharum species. Historical records identify New Guinea as the origin of S. officinarum and that a small number of plants originating from there were used to generate all modern commercial cultivars. The mitochondrial genome can be a useful way to identify the maternal origin of commercial cultivars. We have used the PacBio RSII to sequence and assemble the mitochondrial genome of a South East Asian commercial cultivar, known as Khon Kaen 3. The long read length of this sequencing technology allowed for the mitochondrial genome to be assembled into two distinct circular chromosomes with all repeat sequences spanned by individual reads. Comparison of five commercial hybrids, two S. officinarum and one S. spontaneum to our assembly reveals no structural rearrangements between our assembly, the commercial hybrids and an S. officinarum from New Guinea. The S. spontaneum, from India, and one sample of S. officinarum (unknown origin) are substantially rearranged and have a large number of homozygous variants. This supports the record that S. officinarum plants from New Guinea are the maternal source of all modern commercial hybrids.


July 7, 2019  |  

The complete chloroplast genome sequence of the medicinal plant Swertia mussotii using the PacBio RS II platform.

Swertia mussotii is an important medicinal plant that has great economic and medicinal value and is found on the Qinghai Tibetan Plateau. The complete chloroplast (cp) genome of S. mussotii is 153,431 bp in size, with a pair of inverted repeat (IR) regions of 25,761 bp each that separate an large single-copy (LSC) region of 83,567 bp and an a small single-copy (SSC) region of 18,342 bp. The S. mussotii cp genome encodes 84 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. The identity, number, and GC content of S. mussotii cp genes were similar to those in the genomes of other Gentianales species. Via analysis of the repeat structure, 11 forward repeats, eight palindromic repeats, and one reverse repeat were detected in the S. mussotii cp genome. There are 45 SSRs in the S. mussotii cp genome, the majority of which are mononucleotides found in all other Gentianales species. An entire cp genome comparison study of S. mussotii and two other species in Gentianaceae was conducted. The complete cp genome sequence provides intragenic information for the cp genetic engineering of this medicinal plant.


July 7, 2019  |  

Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana.

Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5?% of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.


July 7, 2019  |  

An ultra-high density genetic linkage map of perennial ryegrass (Lolium perenne) using genotyping by sequencing (GBS) based on a reference shotgun genome assembly.

High density genetic linkage maps that are extensively anchored to assembled genome sequences of the organism in question are extremely useful in gene discovery. To facilitate this process in perennial ryegrass (Lolium perenne L.), a high density single nucleotide polymorphism (SNP)- and presence/absence variant (PAV)-based genetic linkage map has been developed in an F2 mapping population that has been used as a reference population in numerous studies. To provide a reference sequence to which to align genotyping by sequencing (GBS) reads, a shotgun assembly of one of the grandparents of the population, a tenth-generation inbred line, was created using Illumina-based sequencing.The assembly was based on paired-end Illumina reads, scaffolded by mate pair and long jumping distance reads in the range of 3-40?kb, with >200-fold initial genome coverage. A total of 169 individuals from an F2 mapping population were used to construct PstI-based GBS libraries tagged with unique 4-9 nucleotide barcodes, resulting in 284 million reads, with approx. 1·6 million reads per individual. A bioinformatics pipeline was employed to identify both SNPs and PAVs. A core genetic map was generated using high confidence SNPs, to which lower confidence SNPs and PAVs were subsequently fitted in a straightforward binning approach.The assembly comprises 424?750 scaffolds, covering 1·11 Gbp of the 2·5 Gbp perennial ryegrass genome, with a scaffold N50 of 25 212?bp and a contig N50 of 3790?bp. It is available for download, and access to a genome browser has been provided. Comparison of the assembly with available transcript and gene model data sets for perennial ryegrass indicates that approx. 570 Mbp of the gene-rich portion of the genome has been captured. An ultra-high density genetic linkage map with 3092 SNPs and 7260 PAVs was developed, anchoring just over 200?Mb of the reference assembly.The combined genetic map and assembly, combined with another recently released genome assembly, represent a significant resource for the perennial ryegrass genetics community.© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.