Menu
September 22, 2019  |  

Single molecule, full-length transcript sequencing provides insight into the extreme metabolism of ruby-throated hummingbird Archilochus colubris

Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids, derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding a total of 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism.


September 22, 2019  |  

Improved high-quality genome assembly and annotation of Tibetan hulless barley

Background The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called textquotedblleftQingketextquotedblright in Chinese and textquotedblleftNetextquotedblright in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The Tibetan hulless barley in China has about 3500 years of cultivation history, mainly produced in Tibet, Qinghai, Sichuan, Yunnan and other areas. In addition, Tibetan hulless barley has rich nutritional value and outstanding health effects, including the beta glucan, dietary fiber, amylopectin, the contents of trace elements, which are higher than any other cereal crops.Findings Here, we reported an improved high-quality assembly of Tibetan hulless barley genome with 4.0 Gb in size. We employed the falcon assembly package, scaffolding and error correction tools to finish improvement using PacBio long reads sequencing technology, with contig and scaffold N50 lengths of 1.563Mb and 4.006Mb, respectively, representing more continuous than the original Tibetan hulless barley genome nearly two orders of magnitude. We also re-annotated the new assembly, and reported 61,303 stringent confident putative protein-coding genes, of which 40,457 is HC genes. We have developed a new Tibetan hulless barley genome database (THBGD) to download and use friendly, as well as to better manage the information of the Tibetan hulless barley genetic resources.Conclusions The availability of new Tibetan hulless barley genome and annotations will take the genetics of Tibetan hulless barley to a new level and will greatly simplify the breeders effort. It will also enrich the granary of the Tibetan people.AbbreviationsBLASTBasic Local Alignment Search ToolBUSCOBenchmarking Universal Single-Copy OrthologsQVquality valuePacBioPacifc BiosciencesRNA-seqRNA sequencingNGSNext generation sequencingTGSThird generation sequencingTHBGDTibetan hulless barley Genome Database


September 22, 2019  |  

Single-molecule long-read sequencing facilitates shrimp transcriptome research.

Although shrimp are of great economic importance, few full-length shrimp transcriptomes are available. Here, we used Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology to generate transcripts from the Pacific white shrimp (Litopenaeus vannamei). We obtained 322,600 full-length non-chimeric reads, from which we generated 51,367 high-quality unique full-length transcripts. We corrected errors in the SMRT sequences by comparison with Illumina-produced short reads. We successfully annotated 81.72% of all unique SMRT transcripts against the NCBI non-redundant database, 58.63% against Swiss-Prot, 45.38% against Gene Ontology, 32.57% against Clusters of Orthologous Groups of proteins (COG), and 47.83% against Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Across all transcripts, we identified 3,958 long non-coding RNAs (lncRNAs) and 80,650 simple sequence repeats (SSRs). Our study provides a rich set of full-length cDNA sequences for L. vannamei, which will greatly facilitate shrimp transcriptome research.


September 22, 2019  |  

Assessment of an organ-specific de novo transcriptome of the nematode trap-crop, Solanum sisymbriifolium

Solanum sisymbriifolium, also known as “Litchi Tomato” or “Sticky Nightshade,” is an undomesticated and poorly researched plant related to potato and tomato. Unlike the latter species, S. sisymbriifolium induces eggs of the cyst nematode, Globodera pallida, to hatch and migrate into its roots, but then arrests further nematode maturation. In order to provide researchers with a partial blueprint of its genetic make-up so that the mechanism of this response might be identified, we used single molecule real time (SMRT) sequencing to compile a high quality de novo transcriptome of 41,189 unigenes drawn from individually sequenced bud, root, stem, and leaf RNA populations. Functional annotation and BUSCO analysis showed that this transcriptome was surprisingly complete, even though it represented genes expressed at a single time point. By sequencing the 4 organ libraries separately, we found we could get a reliable snapshot of transcript distributions in each organ. A divergent site analysis of the merged transcriptome indicated that this species might have undergone a recent genome duplication and re-diploidization. Further analysis indicated that the plant then retained a disproportionate number of genes associated with photosynthesis and amino acid metabolism in comparison to genes with characteristics of R-proteins or involved in secondary metabolism. The former processes may have given S. sisymbriifolium a bigger competitive advantage than the latter did. Copyright © 2018 Wixom et al.


September 22, 2019  |  

Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis

The Russian dandelion Taraxacum kok-saghyz Rodin (TKS), a member of the Composite family and a potential alternative source of natural rubber (NR) and inulin, is an ideal model system for studying rubber biosynthesis. Here we present the draft genome of TKS, the first assembled NR-producing weed plant. The draft TKS genome assembly has a length of 1.29 Gb, containing 46,731 predicted protein-coding genes and 68.56% repeats, in which the LTR-RT elements predominantly contribute to the genome enlargement. We analyzed the heterozygous regions/genes, suggesting its possible involvement in inbreeding depression. Through comparative studies between rubber-producing and non-rubber-producing plants, we found that enzymes of the mevalonate (MVA) pathway and rubber elongation might be critical for rubber biosynthesis, and several key isoforms have been isolated showing predominantly expressed in the latex, indicating their crucial functions in rubber biosynthesis. Moreover, for two important families in rubber elongation, the CPT/CPTL and REF/SRPP families, diverse evolutionary tracks have been revealed. These results provide valuable resources and new insights into the mechanism of NR biosynthesis, and facilitate the development of alternative NR producing crops.


September 22, 2019  |  

A new standard for crustacean genomes: The highly contiguous, annotated genome assembly of the clam shrimp Eulimnadia texana reveals HOX gene order and identifies the sex chromosome.

Vernal pool clam shrimp (Eulimnadia texana) are a promising model system due to their ease of lab culture, short generation time, modest sized genome, a somewhat rare stable androdioecious sex determination system, and a requirement to reproduce via desiccated diapaused eggs. We generated a highly contiguous genome assembly using 46× of PacBio long read data and 216× of Illumina short reads, and annotated using Illumina RNAseq obtained from adult males or hermaphrodites. Of the 120?Mb genome 85% is contained in the largest eight contigs, the smallest of which is 4.6?Mb. The assembly contains 98% of transcripts predicted via RNAseq. This assembly is qualitatively different from scaffolded Illumina assemblies: It is produced from long reads that contain sequence data along their entire length, and is thus gap free. The contiguity of the assembly allows us to order the HOX genes within the genome, identifying two loci that contain HOX gene orthologs, and which approximately maintain the order observed in other arthropods. We identified a partial duplication of the Antennapedia complex adjacent to the few genes homologous to the Bithorax locus. Because the sex chromosome of an androdioecious species is of special interest, we used existing allozyme and microsatellite markers to identify the E. texana sex chromosome, and find that it comprises nearly half of the genome of this species. Linkage patterns indicate that recombination is extremely rare and perhaps absent in hermaphrodites, and as a result the location of the sex determining locus will be difficult to refine using recombination mapping.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019  |  

Complete genome sequencing of the luminescent bacterium, Vibrio qinghaiensis sp. Q67 using PacBio technology.

Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485?nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500?bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a comparative genome for evolution and speciation studies, as well as for the analysis of protein-coding gene families, the pathogenicity of different Vibrio species in fish, the evolution of non-coding RNA and transposon, and the regulation of gene expression in relation to the bioluminescence of Vqin-Q67.


September 22, 2019  |  

Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae.

Antheraea yamamai, also known as the Japanese oak silk moth, is a wild species of silk moth. Silk produced by A. yamamai, referred to as tensan silk, shows different characteristics such as thickness, compressive elasticity, and chemical resistance compared with common silk produced from the domesticated silkworm, Bombyx mori. Its unique characteristics have led to its use in many research fields including biotechnology and medical science, and the scientific as well as economic importance of the wild silk moth continues to gradually increase. However, no genomic information for the wild silk moth, including A. yamamai, is currently available.In order to construct the A. yamamai genome, a total of 147G base pairs using Illumina and Pacbio sequencing platforms were generated, providing 210-fold coverage based on the 700-Mb estimated genome size of A. yamamai. The assembled genome of A. yamamai was 656 Mb (>2 kb) with 3675 scaffolds, and the N50 length of assembly was 739 Kb with a 34.07% GC ratio. Identified repeat elements covered 37.33% of the total genome, and the completeness of the constructed genome assembly was estimated to be 96.7% by Benchmarking Universal Single-Copy Orthologs v2 analysis. A total of 15 481 genes were identified using Evidence Modeler based on the gene prediction results obtained from 3 different methods (ab initio, RNA-seq-based, known-gene-based) and manual curation.Here we present the genome sequence of A. yamamai, the first genome sequence of the wild silk moth. These results provide valuable genomic information, which will help enrich our understanding of the molecular mechanisms relating to not only specific phenotypes such as wild silk itself but also the genomic evolution of Saturniidae.© The Authors 2017. Published by Oxford University Press.


September 22, 2019  |  

Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla.

Plant genome size varies by four orders of magnitude, and most of this variation stems from dynamic changes in repetitive DNA content. Here we report the small 109?Mb genome of Selaginella lepidophylla, a clubmoss with extreme desiccation tolerance. Single-molecule sequencing enables accurate haplotype assembly of a single heterozygous S. lepidophylla plant, revealing extensive structural variation. We observe numerous haplotype-specific deletions consisting of largely repetitive and heavily methylated sequences, with enrichment in young Gypsy LTR retrotransposons. Such elements are active but rapidly deleted, suggesting “bloat and purge” to maintain a small genome size. Unlike all other land plant lineages, Selaginella has no evidence of a whole-genome duplication event in its evolutionary history, but instead shows unique tandem gene duplication patterns reflecting adaptation to extreme drying. Gene expression changes during desiccation in S. lepidophylla mirror patterns observed across angiosperm resurrection plants.


September 22, 2019  |  

Reference assembly and annotation of the Pyrenophora teres f. teres isolate 0-1.

Pyrenophora teres f.teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of theP. teresf.teresisolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally, genome annotation was mediated by RNAseq analysis using three infection time points and a pure culture sample, resulting in 11,541 high-confidence gene models. The 0-1 genome assembly and annotation presented here now contains the majority of the repetitive content of the genome. Analysis of the 0-1 genome revealed classic characteristics of a “two-speed” genome, being compartmentalized into GC-equilibrated and AT-rich compartments. The assembly of repetitive AT-rich regions will be important for future investigation of genes known as effectors, which often reside in close proximity to repetitive regions. These effectors are responsible for manipulation of the host defense during infection. This updatedP. teresf.teresisolate 0-1 reference genome assembly and annotation provides a robust resource for the examination of the barley-P. teresf.tereshost-pathogen coevolution. Copyright © 2018 Wyatt et al.


September 22, 2019  |  

First draft genome of an iconic clownfish species (Amphiprion frenatus).

Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.© 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


September 22, 2019  |  

High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens.

House dust mites (HDM) are a predominant source of inhalant allergens that attribute to over 50% of worldwide allergy cases, while the full spectrum of HDM allergens remains unknown. Here we sequenced a high-quality genome of Dermatophagoides (D.) pteronyssinus to find known canonical allergens and allergen orthologs inferred from D. farinae genome.


September 22, 2019  |  

Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host.

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


September 22, 2019  |  

Comparative genomic analyses reveal the features for adaptation to nematodes in fungi.

Nematophagous (NP) fungi are ecologically important components of the soil microbiome in natural ecosystems. Esteya vermicola (Ev) has been reported as a NP fungus with a poorly understood evolutionary history and mechanism of adaptation to parasitism. Furthermore, NP fungal genomic basis of lifestyle was still unclear. We sequenced and annotated the Ev genome (34.2 Mbp) and integrated genetic makeup and evolution of pathogenic genes to investigate NP fungi. The results revealed that NP fungi had some abundant pathogenic genes corresponding to their niche. A number of gene families involved in pathogenicity were expanded, and some pathogenic orthologous genes underwent positive selection. NP fungi with diverse morphological features exhibit similarities of evolutionary convergence in attacking nematodes, but their genetic makeup and microscopic mechanism are different. Endoparasitic NP fungi showed similarity in large number of transporters and secondary metabolite coding genes. Noteworthy, expanded families of transporters and endo-beta-glucanase implied great genetic potential of Ev in quickly perturbing nematode metabolism and parasitic behavior. These results facilitate our understanding of NP fungal genomic features for adaptation to nematodes and lay a solid theoretical foundation for further research and application.© The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


September 22, 2019  |  

The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees.

Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki, we could produce high-quality and well resolved sequences. We find that these genomes are around 32 and 34 MB, with 7,808 and 7,851 annotated genes for C. bombi and C. expoeki, respectively-which is somewhat less than reported from other trypanosomatids, with few introns, and organized in polycistronic units. A large fraction of genes received plausible functional support in comparison primarily with Leishmania and Trypanosoma. Comparing the annotated genes of the two species with those of six other trypanosomatids (C. fasciculata, L. pyrrhocoris, L. seymouri, B. ayalai, L. major, and T. brucei) shows similar gene repertoires and many orthologs. Similar to other trypanosomatids, we also find signs of concerted evolution in genes putatively involved in the interaction with the host, a high degree of synteny between C. bombi and C. expoeki, and considerable overlap with several other species in the set. A total of 86 orthologous gene groups show signatures of positive selection in the branch leading to the two Crithidia under study, mostly of unknown function. As an example, we examined the initiating glycosylation pathway of surface components in C. bombi, finding it deviates from most other eukaryotes and also from other kinetoplastids, which may indicate rapid evolution in the extracellular matrix that is involved in interactions with the host. Bumble bees are important pollinators and Crithidia-infections are suspected to cause substantial selection pressure on their host populations. These newly sequenced genomes provide tools that should help better understand host-parasite interactions in these pollinator pathogens.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.