fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Single molecule, full-length transcript sequencing provides insight into the extreme metabolism of ruby-throated hummingbird Archilochus colubris

Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids, derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how…

Read More »

Sunday, September 22, 2019

Improved high-quality genome assembly and annotation of Tibetan hulless barley

Background The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called textquotedblleftQingketextquotedblright in Chinese and textquotedblleftNetextquotedblright in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The Tibetan hulless barley in China has about 3500 years of cultivation history, mainly produced in Tibet, Qinghai, Sichuan, Yunnan and other areas. In addition, Tibetan hulless barley has rich nutritional value and outstanding health effects, including the beta glucan, dietary fiber, amylopectin, the contents of trace elements, which are higher than any other cereal crops.Findings Here, we reported an improved high-quality assembly of Tibetan hulless…

Read More »

Sunday, September 22, 2019

Single-molecule long-read sequencing facilitates shrimp transcriptome research.

Although shrimp are of great economic importance, few full-length shrimp transcriptomes are available. Here, we used Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology to generate transcripts from the Pacific white shrimp (Litopenaeus vannamei). We obtained 322,600 full-length non-chimeric reads, from which we generated 51,367 high-quality unique full-length transcripts. We corrected errors in the SMRT sequences by comparison with Illumina-produced short reads. We successfully annotated 81.72% of all unique SMRT transcripts against the NCBI non-redundant database, 58.63% against Swiss-Prot, 45.38% against Gene Ontology, 32.57% against Clusters of Orthologous Groups of proteins (COG), and 47.83% against Kyoto Encyclopedia of Genes and…

Read More »

Sunday, September 22, 2019

Assessment of an organ-specific de novo transcriptome of the nematode trap-crop, Solanum sisymbriifolium

Solanum sisymbriifolium, also known as “Litchi Tomato” or “Sticky Nightshade,” is an undomesticated and poorly researched plant related to potato and tomato. Unlike the latter species, S. sisymbriifolium induces eggs of the cyst nematode, Globodera pallida, to hatch and migrate into its roots, but then arrests further nematode maturation. In order to provide researchers with a partial blueprint of its genetic make-up so that the mechanism of this response might be identified, we used single molecule real time (SMRT) sequencing to compile a high quality de novo transcriptome of 41,189 unigenes drawn from individually sequenced bud, root, stem, and leaf…

Read More »

Sunday, September 22, 2019

Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis

The Russian dandelion Taraxacum kok-saghyz Rodin (TKS), a member of the Composite family and a potential alternative source of natural rubber (NR) and inulin, is an ideal model system for studying rubber biosynthesis. Here we present the draft genome of TKS, the first assembled NR-producing weed plant. The draft TKS genome assembly has a length of 1.29 Gb, containing 46,731 predicted protein-coding genes and 68.56% repeats, in which the LTR-RT elements predominantly contribute to the genome enlargement. We analyzed the heterozygous regions/genes, suggesting its possible involvement in inbreeding depression. Through comparative studies between rubber-producing and non-rubber-producing plants, we found that…

Read More »

Sunday, September 22, 2019

A new standard for crustacean genomes: The highly contiguous, annotated genome assembly of the clam shrimp Eulimnadia texana reveals HOX gene order and identifies the sex chromosome.

Vernal pool clam shrimp (Eulimnadia texana) are a promising model system due to their ease of lab culture, short generation time, modest sized genome, a somewhat rare stable androdioecious sex determination system, and a requirement to reproduce via desiccated diapaused eggs. We generated a highly contiguous genome assembly using 46× of PacBio long read data and 216× of Illumina short reads, and annotated using Illumina RNAseq obtained from adult males or hermaphrodites. Of the 120?Mb genome 85% is contained in the largest eight contigs, the smallest of which is 4.6?Mb. The assembly contains 98% of transcripts predicted via RNAseq. This…

Read More »

Sunday, September 22, 2019

Complete genome sequencing of the luminescent bacterium, Vibrio qinghaiensis sp. Q67 using PacBio technology.

Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485?nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500?bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a…

Read More »

Sunday, September 22, 2019

Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae.

Antheraea yamamai, also known as the Japanese oak silk moth, is a wild species of silk moth. Silk produced by A. yamamai, referred to as tensan silk, shows different characteristics such as thickness, compressive elasticity, and chemical resistance compared with common silk produced from the domesticated silkworm, Bombyx mori. Its unique characteristics have led to its use in many research fields including biotechnology and medical science, and the scientific as well as economic importance of the wild silk moth continues to gradually increase. However, no genomic information for the wild silk moth, including A. yamamai, is currently available.In order to…

Read More »

Sunday, September 22, 2019

Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla.

Plant genome size varies by four orders of magnitude, and most of this variation stems from dynamic changes in repetitive DNA content. Here we report the small 109?Mb genome of Selaginella lepidophylla, a clubmoss with extreme desiccation tolerance. Single-molecule sequencing enables accurate haplotype assembly of a single heterozygous S. lepidophylla plant, revealing extensive structural variation. We observe numerous haplotype-specific deletions consisting of largely repetitive and heavily methylated sequences, with enrichment in young Gypsy LTR retrotransposons. Such elements are active but rapidly deleted, suggesting “bloat and purge” to maintain a small genome size. Unlike all other land plant lineages, Selaginella has…

Read More »

Sunday, September 22, 2019

Reference assembly and annotation of the Pyrenophora teres f. teres isolate 0-1.

Pyrenophora teres f.teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of theP. teresf.teresisolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally,…

Read More »

Sunday, September 22, 2019

First draft genome of an iconic clownfish species (Amphiprion frenatus).

Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly…

Read More »

Sunday, September 22, 2019

High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens.

House dust mites (HDM) are a predominant source of inhalant allergens that attribute to over 50% of worldwide allergy cases, while the full spectrum of HDM allergens remains unknown. Here we sequenced a high-quality genome of Dermatophagoides (D.) pteronyssinus to find known canonical allergens and allergen orthologs inferred from D. farinae genome.

Read More »

Sunday, September 22, 2019

Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host.

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a…

Read More »

Sunday, September 22, 2019

Comparative genomic analyses reveal the features for adaptation to nematodes in fungi.

Nematophagous (NP) fungi are ecologically important components of the soil microbiome in natural ecosystems. Esteya vermicola (Ev) has been reported as a NP fungus with a poorly understood evolutionary history and mechanism of adaptation to parasitism. Furthermore, NP fungal genomic basis of lifestyle was still unclear. We sequenced and annotated the Ev genome (34.2 Mbp) and integrated genetic makeup and evolution of pathogenic genes to investigate NP fungi. The results revealed that NP fungi had some abundant pathogenic genes corresponding to their niche. A number of gene families involved in pathogenicity were expanded, and some pathogenic orthologous genes underwent positive…

Read More »

Sunday, September 22, 2019

The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees.

Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki,…

Read More »

1 2 3 4 5 11

Subscribe for blog updates:

Archives