June 1, 2021  |  

Full-length isoform sequencing of the human MCF-7 cell line using PacBio long reads.

While advances in RNA sequencing methods have accelerated our understanding of the human transcriptome, isoform discovery remains a challenge because short read lengths require complicated assembly algorithms to infer the contiguity of full-length transcripts. With PacBio’s long reads, one can now sequence full-length transcript isoforms up to 10 kb. The PacBio Iso- Seq protocol produces reads that originate from independent observations of single molecules, meaning no assembly is needed. Here, we sequenced the transcriptome of the human MCF-7 breast cancer cell line using the Clontech SMARTer® cDNA preparation kit and the PacBio RS II. Using PacBio Iso-Seq bioinformatics software, we obtained 55,770 unique, full-length, high-quality transcript sequences that were subsequently mapped back to the human genome with = 99% accuracy. In addition, we identified both known and novel fusion transcripts. To assess our results, we compared the predicted ORFs from the PacBio data against a published mass spectrometry dataset from the same cell line. 84% of the proteins identified with the Uniprot protein database were recovered by the PacBio predictions. Notably, 251 peptides solely matched to the PacBio generated ORFs and were entirely novel, including abundant cases of single amino acid polymorphisms, cassette exon splicing and potential alternative protein coding frames.

June 1, 2021  |  

Detection of structural variants using third generation sequencing

Structural Variants (SVs), which include deletions, insertions, duplications, inversions and chromosomal rearrangements, have been shown to effect organism phenotypes, including changing gene expression, increasing disease risk, and playing an important role in cancer development. Still it remains challenging to detect all types of SVs from high throughput sequencing data and it is even harder to detect more complex SVs such as a duplication nested within an inversion. To overcome these challenges we developed algorithms for SV analysis using longer third generation sequencing reads. The increased read lengths allow us to span more complex SVs and accurately assess SVs in repetitive regions, two of the major limitations when using short Illumina data. Our enhanced open-source analysis method Sniffles accurately detects structural variants based on split read mapping and assessment of the alignments. Sniffles uses a self-balancing interval tree in combination with a plane sweep algorithm to manage and assess the identified SVs. Central to its high accuracy is its advanced scoring model that can distinguish erroneous alignments from true breakpoints flanking SVs. In experiments with simulated and real genomes (e.g human breast cancer), we find that Sniffles outperforms all other SV analysis approaches in both the sensitivity of finding events as well as the specificity of those events. Sniffles is available at: https://github.com/fritzsedlazeck/Sniffles

June 1, 2021  |  

Comprehensive genome and transcriptome structural analysis of a breast cancer cell line using PacBio long read sequencing

Genomic instability is one of the hallmarks of cancer, leading to widespread copy number variations, chromosomal fusions, and other structural variations. The breast cancer cell line SK-BR-3 is an important model for HER2+ breast cancers, which are among the most aggressive forms of the disease and affect one in five cases. Through short read sequencing, copy number arrays, and other technologies, the genome of SK-BR-3 is known to be highly rearranged with many copy number variations, including an approximately twenty-fold amplification of the HER2 oncogene. However, these technologies cannot precisely characterize the nature and context of the identified genomic events and other important mutations may be missed altogether because of repeats, multi-mapping reads, and the failure to reliably anchor alignments to both sides of a variation. To address these challenges, we have sequenced SK-BR-3 using PacBio long read technology. Using the new P6-C4 chemistry, we generated more than 70X coverage of the genome with average read lengths of 9-13kb (max: 71kb). Using Lumpy for split-read alignment analysis, as well as our novel assembly-based algorithms for finding complex variants, we have developed a detailed map of structural variations in this cell line. Taking advantage of the newly identified breakpoints and combining these with copy number assignments, we have developed an algorithm to reconstruct the mutational history of this cancer genome. From this we have discovered a complex series of nested duplications and translocations between chr17 and chr8, two of the most frequent translocation partners in primary breast cancers, resulting in amplification of HER2. We have also carried out full-length transcriptome sequencing using PacBio’s Iso-Seq technology, which has revealed a number of previously unrecognized gene fusions and isoforms. Combining long-read genome and transcriptome sequencing technologies enables an in-depth analysis of how changes in the genome affect the transcriptome, including how gene fusions are created across multiple chromosomes. This analysis has established the most complete cancer reference genome available to date, and is already opening the door to applying long-read sequencing to patient samples with complex genome structures.

February 5, 2021  |  

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo),…

April 21, 2020  |  

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based, from short-, linked-, and long-read sequencing, as well as optical and electronic mapping. The final benchmark set contains 12745 isolated, sequence-resolved insertion and deletion calls =50 base pairs (bp) discovered by at least 2 technologies or 5 callsets, genotyped as heterozygous or homozygous variants by long reads. The Tier 1 benchmark regions, for which any extra calls are putative false positives, cover 2.66 Gbp and 9641 SVs supported by at least one diploid assembly. Support for SVs was assessed using svviz with short-, linked-, and long-read sequence data. In general, there was strong support from multiple technologies for the benchmark SVs, with 90 % of the Tier 1 SVs having support in reads from more than one technology. The Mendelian genotype error rate was 0.3 %, and genotype concordance with manual curation was >98.7 %. We demonstrate the utility of the benchmark set by showing it reliably identifies both false negatives and false positives in high-quality SV callsets from short-, linked-, and long-read sequencing and optical mapping.

April 21, 2020  |  

The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition.

Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits.We obtained >187.22 and 178.87 gigabases of sequence, and ~288× and 248× genome coverage, to a pecan cultivar (“Pawnee”) and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives.Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement. © The Author(s) 2019. Published by Oxford University Press.

April 21, 2020  |  

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that are being applied to pathogenic microorganisms and viruses, constitutional disorders, pharmacogenomics, cancer, and more.Copyright © 2018 Elsevier Ltd. All rights reserved.

April 21, 2020  |  

Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Ka inhibitors.

Activating mutations in PIK3CA are frequent in human breast cancer, and phosphoinositide 3-kinase alpha (PI3Ka) inhibitors have been approved for therapy. To characterize determinants of sensitivity to these agents, we analyzed PIK3CA-mutant cancer genomes and observed the presence of multiple PIK3CA mutations in 12 to 15% of breast cancers and other tumor types, most of which (95%) are double mutations. Double PIK3CA mutations are in cis on the same allele and result in increased PI3K activity, enhanced downstream signaling, increased cell proliferation, and tumor growth. The biochemical mechanisms of dual mutations include increased disruption of p110a binding to the inhibitory subunit p85a, which relieves its catalytic inhibition, and increased p110a membrane lipid binding. Double PIK3CA mutations predict increased sensitivity to PI3Ka inhibitors compared with single-hotspot mutations.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

April 21, 2020  |  

Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA.

Circulating DNA in plasma consists of short DNA fragments. The biological processes generating such fragments are not well understood. DNASE1L3 is a secreted DNASE1-like nuclease capable of digesting DNA in chromatin, and its absence causes anti-DNA responses and autoimmunity in humans and mice. We found that the deletion of Dnase1l3 in mice resulted in aberrations in the fragmentation of plasma DNA. Such aberrations included an increase in short DNA molecules below 120 bp, which was positively correlated with anti-DNA antibody levels. We also observed an increase in long, multinucleosomal DNA molecules and decreased frequencies of the most common end motifs found in plasma DNA. These aberrations were independent of anti-DNA response, suggesting that they represented a primary effect of DNASE1L3 loss. Pregnant Dnase1l3-/- mice carrying Dnase1l3+/- fetuses showed a partial restoration of normal frequencies of plasma DNA end motifs, suggesting that DNASE1L3 from Dnase1l3-proficient fetuses could enter maternal systemic circulation and affect both fetal and maternal DNA fragmentation in a systemic as well as local manner. However, the observed shortening of circulating fetal DNA relative to maternal DNA was not affected by the deletion of Dnase1l3 Collectively, our findings demonstrate that DNASE1L3 plays a role in circulating plasma DNA homeostasis by enhancing fragmentation and influencing end-motif frequencies. These results support a distinct role of DNASE1L3 as a regulator of the physical form and availability of cell-free DNA and may have important implications for the mechanism whereby this enzyme prevents autoimmunity. Copyright © 2019 the Author(s). Published by PNAS.

April 21, 2020  |  

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.