Menu
July 7, 2019  |  

Complete genome of Zhongshania aliphaticivorans SM-2(T), an aliphatic hydrocarbon-degrading bacterium isolated from tidal flat sediment.

Zhongshania aliphaticivorans SM-2(T), a degrader of aliphatic hydrocarbons, is a Gram-negative, rod-shaped, flagellated, facultatively aerobic bacterium. Here, we report the genome sequence of strain SM-2(T), which has a size of 4,204,359bp with 44 tRNAs, 9 rRNAs, and 3664 protein-coding genes. In addition, several genes encoding aliphatic hydrocarbon degraders (alkane 1-monooxygenase, haloalkane dehalogenase, and cytochrome P450) were detected in the genome shedding light on the function of pollutants degradation. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Whole-genome sequence of Erysipelothrix larvae LV19(T) (=KCTC 33523(T)), a useful strain for arsenic detoxification, from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus.

Erysipelothrix larvae LV19(T) was preliminary isolated from the larval gut of a rhinoceros beetle, Trypoxylus dichotomus in Korea. Here, we present the whole genome sequence of E. larvae LV19(T) strain, which consisted of 2,511,486 base pairs with a GC content of 37.4% and one plasmid. Unlike other Erysipelothrix strains (SY 1027, Fujisawa and ATCC 19414), the arsenic-resistance genes were identified in LV19(T) strain. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Halocynthiibacter arcticus PAMC 20958(T) from an Arctic marine sediment sample.

Here, we present the first complete genome sequence of the strain PAMC 20958(T) from the genus Halocynthiibacter. Halocynthiibacter arcticus PAMC 20958(T), isolated from a marine sediment of the Arctic, is a gram-negative, aerobic, and rod-shaped bacterium. The complete genome contains 4,329,554 base pairs with 53.21% GC content and a 44,566 base pair plasmid with 48.72% GC content. This genome contained genes encoding alkaline phosphatase and lipase, and genes that confer resistance to arsenic, cadmium, tellurite, and acriflavin. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Pedobacter cryoconitis PAMC 27485, a CRISPR-Cas system-containing psychrophile isolated from Antarctica.

Pedobacter cryoconitis PAMC 27485, an aerobic, Gram-negative, facultatively psychrophilic bacterium, was isolated from Antarctic soil. Here we report the complete genome of P. cryoconitis PAMC 27485, which contains a type II CRISPR-Cas system and genes encoding useful enzymes (e.g. proteases). The genome sequence of P. cryoconitis PAMC 27485 could provide insights into its adaptive immune system against foreign genetic elements and biotechnological potential. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

De novo assembly of complete genome sequence of Planococcus kocurii ATCC 43650(T), a potential plant growth promoting bacterium.

Planococcus kocurii ATCC 43650(T) is a halotolerant and psychrotolerant bacterium isolated from the skin of a North sea cod. Here, we present the first complete genome and annotation of P. kocurii ATCC 43650(T), identifying its potential as a plant growth promoting bacterium and its capability in the biosynthesis of butanol. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of the Streptomyces sp. strain CdTB01, a bacterium tolerant to cadmium.

Streptomyces sp. Strain CdTB01, which is tolerant to high concentrations of heavy metals, particularly cadmium, was isolated from soil contaminated with heavy metals. Two contigs with total genome size of 10.19Mb were identified in the whole genome sequencing and assembly, and numerous homologous genes known to be involved in heavy metal resistance were found in the genome. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequencing and comparative genomic analysis of functionally diverse Lysinibacillus sphaericus III(3)7.

Lysinibacillus sphaericus III(3)7 is a native Colombian strain, the first one isolated from soil samples. This strain has shown high levels of pathogenic activity against Culex quinquefaciatus larvae in laboratory assays compared to other members of the same species. Using Pacific Biosciences sequencing technology we sequenced, annotated (de novo) and described the genome of strain III(3)7, achieving a complete genome sequence status. We then performed a comparative analysis between the newly sequenced genome and the ones previously reported for Colombian isolates L. sphaericus OT4b.31, CBAM5 and OT4b.25, with the inclusion of L. sphaericus C3-41 that has been used as a reference genome for most of previous genome sequencing projects. We concluded that L. sphaericus III(3)7 is highly similar with strain OT4b.25 and shares high levels of synteny with isolates CBAM5 and C3-41.


July 7, 2019  |  

Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Draft genome sequence of Mycobacterium rufum JS14(T), a polycyclic-aromatic-hydrocarbon-degrading bacterium from petroleum-contaminated soil in Hawaii.

Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G?+?C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.


July 7, 2019  |  

‘Candidatus Tenderia electrophaga’, an uncultivated electroautotroph from a biocathode enrichment.

Biocathode communities are of interest for a variety of applications, including electrosynthesis, bioremediation, and biosensors, yet much remains to be understood about the biological processes that occur to enable these communities to grow. One major difficulty in understanding these communities is that the critical autotrophic organisms are difficult to cultivate. An uncultivated, electroautotrophic bacterium previously identified as an uncultivated member of the family Chromatiaceae appears to be a key organism in an autotrophic biocathode microbial community. Metagenomic, metaproteomic and metatranscriptomic characterization of this community indicates that there is likely a single organism that utilizes electrons from the cathode to fix CO2, yet this organism has not been obtained in pure culture. Fluorescence in situ hybridization reveals that the organism grows as rod-shaped cells approximately 1.8 × 0.6 µm, and forms large clumps on the cathode. The genomic DNA G+C content was 59.2 mol%. Here we identify the key features of this organism and propose ‘Candidatus Tenderia electrophaga’, within the Gammaproteobacteria on the basis of low nucleotide and predicted protein sequence identity to known members of the orders Chromatiales and Thiotrichales.


July 7, 2019  |  

Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites

Pseudomonas citronellolis is a Gram negative, motile gammaproteobacterium belonging to the order Pseudomonadales and the family Pseudomonadaceae. We isolated strain P3B5 from the phyllosphere of basil plants (Ocimum basilicum L.). Here we describe the physiology of this microorganism, its full genome sequence, and detailed annotation. The 6.95 Mbp genome contains 6071 predicted protein coding sequences and 96 RNA coding sequences. P. citronellolis has been the subject of many studies including the investigation of long-chain aliphatic compounds and terpene degradation. Plant leaves are covered by long-chain aliphates making up a waxy layer that is associated with the leaf cuticle. In addition, basil leaves are known to contain high amounts of terpenoid substances, hinting to a potential nutrient niche that might be exploited by P. citronellolis. Furthermore, the isolated strain exhibited resistance to several antibiotics. To evaluate the potential of this strain as source of transferable antibiotic resistance genes on raw consumed herbs we therefore investigated if those resistances are encoded on mobile genetic elements. The availability of the genome will be helpful for comparative genomics of the phylogenetically broad pseudomonads, in particular with the sequence of the P. citronellolis type strain PRJDB205 not yet publicly available. The genome is discussed with respect to a phyllosphere related lifestyle, aliphate and terpenoid degradation, and antibiotic resistance.


July 7, 2019  |  

The complete genome of Dietzia timorensis ID05-A0528(T) revealed the genetic basis for its saline-alkali tolerance.

The type strain Dietzia timorensis ID05-A0528(T), was reported to be able to survive in the highly saline and alkaline environments with diverse carbon sources. In order to more pertinently understand the genetic mechanisms of its environmental tolerance and crude oil emulsification, we reported the complete genome sequence of the strain in the study. The genome contains only one circular chromosome, with the total size of 3,607,892 bps, and the G+C content of this strain is 65.58%, much lower than other type strains of this genus. It was found that strain ID05-A0528(T) contains genes involved in transportation and biosynthesis of compatible solutes, as well as genes encoding monovalent cation/proton antiporters, which could explain its abilities to tolerate high salinity and alkalinity. Various central metabolic routes and complete alkane hydroxylation pathway were also identified in the genome of strain ID05-A0528(T), which is in accordance with its ability to use a wide spectrum of carbon sources and to degrade n-alkanes. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil.

Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.


July 7, 2019  |  

Complete genome sequence of a bacterium representing a deep uncultivated lineage within the Gammaproteobacteria associated with the degradation of polycyclic aromatic hydrocarbons.

The bacterial strain TR3.2, representing a novel deeply branching lineage within the Gammaproteobacteria, was isolated and its genome sequenced. This isolate is the first cultivated representative of the previously described “Pyrene Group 2” (PG2) and represents a variety of environmental sequences primarily associated with petrochemical contamination and aromatic hydrocarbon degradation. Copyright © 2016 Singleton et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.