Menu
September 22, 2019  |  

Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.

Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers. Copyright © 2015 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

The influence of energy harvesting strategies on performance and microbial community for sediment microbial fuel cells

Sediment microbial fuel cells (SMFCs) are being developed as potential energy sources where remote sensing and monitoring would be useful. Several energy harvesting techniques for SMFCs have emerged, but effects of these different strategies on startup, performance, and microbial community are not well understood. We investigated these effects by comparing a continuous energy harvesting (CEH) strategy with an intermittent energy harvesting (IEH) strategy. During startup, IEH systems immediately produced higher power and were cathode limited. CEH systems exhibited a gradual power increase and were anode-limited during startup. Both system types produced similar amounts of steady-state power, 1.5 mW ft-2 (16 mW m-2) when optimized. However, an IEH system using unoptimized settings could not be subsequently switched to optimal settings and produce expected power levels. The choice of energy harvester did not appear to significantly affect steady-state community structure. Anodes were dominated by ?- and d-proteobacteria while a- and ?-proteobacteria dominated cathodes. The results suggest performance and community structure are unaffected by energy harvesting strategy, but that startup conditions influence the initial amount of harvested energy and steady-state performance, suggesting future investigations into optimizing startup of these systems are critical for rapidly generating maximum power.


September 22, 2019  |  

Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island.

Lignocellulose, mostly composed of cellulose, hemicellulose and lignin generated through secondary growth of woody plant, is considered as promising resources for bio-fuel. In order to use lignocellulose as a biofuel, the biodegradation besides high-cost chemical treatments were applied, but its knowledge on decomposition of lignocellulose occurring in a natural environment were insufficient. We analyzed 16S rRNA gene and metagenome to understand how the lignocellulose are decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using Single Molecules Real-Time Sequencing revealed that the assembled contigs determined by originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy) and Protein families (Pfam) based analysis showed that Proteobacteria was involved in degrading whole lignocellulose and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrate. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.


September 22, 2019  |  

Scale-up of sediment microbial fuel cells.

Sediment microbial fuel cells (SMFCs) are used as renewable power sources to operate remote sensors. However, increasing the electrode surface area results in decreased power density, which demonstrates that SMFCs do not scale up with size. As an alternative to the physical scale-up of SMFCs, we proposed that it is possible to scale up power by using smaller-sized individually operated SMFCs connected to a power management system that electrically isolates the anodes and cathodes. To demonstrate our electronic scale-up approach, we operated one 0.36-m2 SMFC (called a single-equivalent SMFC) and four independent SMFCs of 0.09 m2 each (called scaled-up SMFCs) and managed the power using an innovative custom-developed power management system. We found that the single-equivalent SMFC and the scaled-up SMFCs produced similar power for the first 155 days. However, in the long term (>155 days) our scaled-up SMFCs generated significantly more power than the single-equivalent SMFC (2.33 mW vs. 0.64 mW). Microbial community analysis of the single-equivalent SMFC and the scaled-up SMFCs showed very similar results, demonstrating that the difference in operation mode had no significant effect on the microbial community. When we compared scaled-up SMFCs with parallel SMFCs, we found that the scaled-up SMFCs generated more power. Our novel approach demonstrates that SMFCs can be scaled up electronically.


September 22, 2019  |  

Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres.

Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.


September 22, 2019  |  

Association of gene expression with biomass content and composition in sugarcane.

About 64% of the total aboveground biomass in sugarcane production is from the culm, of which ~90% is present in fiber and sugars. Understanding the transcriptome in the sugarcane culm, and the transcripts that are associated with the accumulation of the sugar and fiber components would facilitate the modification of biomass composition for enhanced biofuel and biomaterial production. The Sugarcane Iso-Seq Transcriptome (SUGIT) database was used as a reference for RNA-Seq analysis of variation in gene expression between young and mature tissues, and between 10 genotypes with varying fiber content. Global expression analysis suggests that each genotype displayed a unique expression pattern, possibly due to different chromosome combinations and maturation amongst these genotypes. Apart from direct sugar- and fiber-related transcripts, the differentially expressed (DE) transcripts in this study belonged to various supporting pathways that are not obviously involved in the accumulation of these major biomass components. The analysis revealed 1,649 DE transcripts between the young and mature tissues, while 555 DE transcripts were found between the low and high fiber genotypes. Of these, 151 and 23 transcripts respectively, were directly involved in sugar and fiber accumulation. Most of the transcripts identified were up-regulated in the young tissues (2 to 22-fold, FDR adjusted p-value <0.05), which could be explained by the more active metabolism in the young tissues compared to the mature tissues in the sugarcane culm. The results of analysis of the contrasting genotypes suggests that due to the large number of genes contributing to these traits, some of the critical DE transcripts could display less than 2-fold differences in expression and might not be easily identified. However, this transcript profiling analysis identified full-length candidate transcripts and pathways that were likely to determine the differences in sugar and fiber accumulation between tissue types and contrasting genotypes.


September 22, 2019  |  

Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection.

Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ~75% of the genus-level bacterial and archaeal taxa present in the rumen.


September 22, 2019  |  

Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations.

Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.


September 22, 2019  |  

PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges andopportunities.

Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.


September 22, 2019  |  

Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms.

Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, a-proteobacteria and ß-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation.


September 22, 2019  |  

Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

Switchgrass (Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts.We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures.Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.


September 22, 2019  |  

Electrosynthesis of commodity chemicals by an autotrophic microbial community.

A microbial community originating from brewery waste produced methane, acetate, and hydrogen when selected on a granular graphite cathode poised at -590 mV versus the standard hydrogen electrode (SHE) with CO(2) as the only carbon source. This is the first report on the simultaneous electrosynthesis of these commodity chemicals and the first description of electroacetogenesis by a microbial community. Deep sequencing of the active community 16S rRNA revealed a dynamic microbial community composed of an invariant Archaea population of Methanobacterium spp. and a shifting Bacteria population. Acetobacterium spp. were the most abundant Bacteria on the cathode when acetogenesis dominated. Methane was generally the dominant product with rates increasing from <1 to 7 mM day(-1) (per cathode liquid volume) and was concomitantly produced with acetate and hydrogen. Acetogenesis increased to >4 mM day(-1) (accumulated to 28.5 mM over 12 days), and methanogenesis ceased following the addition of 2-bromoethanesulfonic acid. Traces of hydrogen accumulated during initial selection and subsequently accelerated to >11 mM day(-1) (versus 0.045 mM day(-1) abiotic production). The hypothesis of electrosynthetic biocatalysis occurring at the microbe-electrode interface was supported by a catalytic wave (midpoint potential of -460 mV versus SHE) in cyclic voltammetry scans of the biocathode, the lack of redox active components in the medium, and the generation of comparatively high amounts of products (even after medium exchange). In addition, the volumetric production rates of these three commodity chemicals are marked improvements for electrosynthesis, advancing the process toward economic feasibility.


September 22, 2019  |  

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.


September 22, 2019  |  

De novo assembly and characterizing of the culm-derived meta-transcriptome from the polyploid sugarcane genome based on coding transcripts

Sugarcane biomass has been used for sugar, bioenergy and biomaterial production. The majority of the sugarcane biomass comes from the culm, which makes it important to understand the genetic control of biomass production in this part of the plant. A meta-transcriptome of the culm was obtained in an earlier study by using about one billion paired-end (150 bp) reads of deep RNA sequencing of samples from 20 diverse sugarcane genotypes and combining de novo assemblies from different assemblers and different settings. Although many genes could be recovered, this resulted in a large combined assembly which created the need for clustering to reduce transcript redundancy while maintaining gene content. Here, we present a comprehensive analysis of the effect of different assembly settings and clustering methods on de novo assembly, annotation and transcript profiling focusing especially on the coding transcripts from the highly polyploid sugarcane genome. The new coding sequence-based transcript clustering resulted in a better representation of transcripts compared to the earlier approach, having 121,987 contigs, which included 78,052 main and 43,935 alternative transcripts. About 73%, 67%, 61% and 10% of the transcriptome was annotated against the NCBI NR protein database, GO terms, orthologous groups and KEGG orthologies, respectively. Using this set for a differential gene expression analysis between the young and mature sugarcane culm tissues, a total of 822 transcripts were found to be differentially expressed, including key transcripts involved in sugar/fiber accumulation in sugarcane. In the context of the lack of a whole genome sequence for sugarcane, the availability of a well annotated culm-derived meta-transcriptome through deep sequencing provides useful information on coding genes specific to the sugarcane culm and will certainly contribute to understanding the process of carbon partitioning, and biomass accumulation in the sugarcane culm.


September 22, 2019  |  

Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment.

Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.