Menu
July 7, 2019

Host genetic variation strongly influences the microbiome structure and function in fungal fruiting-bodies.

Despite increasing knowledge on host-associated microbiomes, little is known about mechanisms underlying fungus-microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus-associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting-bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting-bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting-bodies are suitable for further genome-centric studies on host-microbiome interactions.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019

Complete genome sequence of multiple-antibiotic-resistant Streptococcus parauberis strain SPOF3K, isolated from diseased olive flounder (Paralichthys olivaceus).

Here, we report the complete genome sequence of multiple-antibiotic-resistant Streptococcus parauberis strain SPOF3K, isolated from the kidney of a diseased olive flounder in South Korea in 2013. Sequencing using a PacBio platform yielded a circular chromosome of 2,128,740?bp and a plasmid of 23,538?bp, harboring 2,123 and 24 protein-coding genes, respectively. Copyright © 2018 Lee et al.


July 7, 2019

Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01.

A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum. The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.


July 7, 2019

Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano.

The Salar de Huasco is an evaporitic basin located in the Chilean Altiplano, which presents extreme environmental conditions for life, i.e. high altitude (3800 m.a.s.l.), negative water balance, a wide salinity range, high daily temperature changes and the occurrence of the highest registered solar radiation on the planet (>?1200 W m-2). This ecosystem is considered as a natural laboratory to understand different adaptations of microorganisms to extreme conditions. Rhodobacter, an anoxygenic aerobic phototrophic bacterial genus, represents one of the most abundant groups reported based on taxonomic diversity surveys in this ecosystem. The bacterial mat isolate Rhodobacter sp. strain Rb3 was used to study adaptation mechanisms to stress-inducing factors potentially explaining its success in a polyextreme ecosystem. We found that the Rhodobacter sp. Rb3 genome was characterized by a high abundance of genes involved in stress tolerance and adaptation strategies, among which DNA repair and oxidative stress were the most conspicuous. Moreover, many other molecular mechanisms associated with oxidative stress, photooxidation and antioxidants; DNA repair and protection; motility, chemotaxis and biofilm synthesis; osmotic stress, metal, metalloid and toxic anions resistance; antimicrobial resistance and multidrug pumps; sporulation; cold shock and heat shock stress; mobile genetic elements and toxin-antitoxin system were detected and identified as potential survival mechanism features in Rhodobacter sp. Rb3. In total, these results reveal a wide set of strategies used by the isolate to adapt and thrive under environmental stress conditions as a model of polyextreme environmental resistome.


July 7, 2019

PlasmidTron: assembling the cause of phenotypes and genotypes from NGS data.

Increasingly rich metadata are now being linked to samples that have been whole-genome sequenced. However, much of this information is ignored. This is because linking this metadata to genes, or regions of the genome, usually relies on knowing the gene sequence(s) responsible for the particular trait being measured and looking for its presence or absence in that genome. Examples of this would be the spread of antimicrobial resistance genes carried on mobile genetic elements (MGEs). However, although it is possible to routinely identify the resistance gene, identifying the unknown MGE upon which it is carried can be much more difficult if the starting point is short-read whole-genome sequence data. The reason for this is that MGEs are often full of repeats and so assemble poorly, leading to fragmented consensus sequences. Since mobile DNA, which can carry many clinically and ecologically important genes, has a different evolutionary history from the host, its distribution across the host population will, by definition, be independent of the host phylogeny. It is possible to use this phenomenon in a genome-wide association study to identify both the genes associated with the specific trait and also the DNA linked to that gene, for example the flanking sequence of the plasmid vector on which it is encoded, which follows the same patterns of distribution as the marker gene/sequence itself. We present PlasmidTron, which utilizes the phenotypic data normally available in bacterial population studies, such as antibiograms, virulence factors, or geographical information, to identify traits that are likely to be present on DNA that can randomly reassort across defined bacterial populations. It is also possible to use this methodology to associate unknown genes/sequences (e.g. plasmid backbones) with a specific molecular signature or marker (e.g. resistance gene presence or absence) using PlasmidTron. PlasmidTron uses a k-mer-based approach to identify reads associated with a phylogenetically unlinked phenotype. These reads are then assembled de novo to produce contigs in a fast and scalable-to-large manner. PlasmidTron is written in Python 3 and is available under the open source licence GNU GPL3 from https://github.com/sanger-pathogens/plasmidtron.


July 7, 2019

Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of group G M. aeruginosa.

Microcystis aeruginosa is a freshwater bloom-forming cyanobacterium that is distributed worldwide. M. aeruginosa can be divided into at least 8 phylogenetic groups (A-G and X) at the intraspecific level. Here, we report the complete genome sequence of M. aeruginosa NIES-2481, which was isolated from Lake Kasumigaura, Japan, and is assigned to group G. The complete genome sequence of M. aeruginosa NIES-2481 comprises a 4.29-Mbp circular chromosome and a 147,539-bp plasmid; the circular chromosome and the plasmid contain 4,332 and 167 protein-coding genes, respectively. Comparative analysis with the complete genome of M. aeruginosa NIES-2549, which belongs to the same group with NIES-2481, showed that the genome size is the smallest level in previously sequenced M. aeruginosa strains, and the genomes do not contain a microcystin biosynthetic gene cluster in common. Synteny analysis revealed only small-scale rearrangements between the two genomes.


July 7, 2019

Complete genome sequences of two Bacillus pumilus strains from Cuatrociénegas, Coahuila, Mexico.

We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions. Copyright © 2018 Zarza et al.


July 7, 2019

Complete genome sequence of the poly-?-glutamate-synthesizing Bacterium Bacillus subtilis Bs-115.

Bacillus subtilis Bs-115 was isolated from the soil of a corn field in Yutai County, Jinan City, Shandong Province, People’s Republic of China, and is characterized by the efficient synthesis of poly-?-glutamate (?-PGA), with corn saccharification liquid as the sole energy and carbon source during the process of ?-PGA formation. Here, we report the complete genome sequence of Bacillus subtilis Bs-115 and the genes associated with poly-?-glutamate synthesis. Copyright © 2018 Wang et al.


July 7, 2019

Reevaluation of the complete genome sequence of Magnetospirillum gryphiswaldense MSR-1 with Single-Molecule Real-Time Sequencing data.

Magnetospirillum gryphiswaldense is a key organism for understanding magnetosome formation and magnetotaxis. As earlier studies suggested a high genomic plasticity, we (re)sequenced the type strain MSR-1 and the laboratory strain R3/S1. Both sequences differ by only 11 point mutations, but organization of the magnetosome island deviates from that of previous genome sequences. Copyright © 2018 Uebe et al.


July 7, 2019

Draft genome sequence of a Shewanella halifaxensis strain isolated from the intestine of marine red seabream (Pagrus major), which includes an integrative conjugative element with macrolide resistance genes.

Shewanella halifaxensis strain 6JANF4-E-4 was isolated from the intestine of a red seabream (Pagrus major). Here, we report the draft genome sequence of this bacterium, which includes an integrative conjugative element of the SXT/R391 family, where the macrolide resistance determinants mef(C) and mph(G) exist. Copyright © 2018 Sugimoto et al.


July 7, 2019

Complete genome sequence of Methylomonas denitrificans strain FJG1, an obligate aerobic methanotroph that can couple methane oxidation with denitrification.

Methylomonas denitrificans strain FJG1 is a member of the gammaproteobacterial methanotrophs. The sequenced genome of FJG1 reveals the presence of genes that encode methane, methanol, formaldehyde, and formate oxidation. It also contains genes that encode enzymes for nitrate reduction to nitrous oxide, consistent with the ability of FJG1 to couple denitrification with methane oxidation. Copyright © 2018 Orata et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.