April 21, 2020  |  

Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments

Paracoccus sp. Arc7-R13, a silver nanoparticles (AgNPs) synthesizing bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Paracoccus sp. Arc7-R13. The complete genome contains 4,040,012?bp with 66.66?mol%?G?+?C content, including one circular chromosome of 3,231,929?bp (67.45?mol%?G?+?C content), and eight plasmids with length ranging from 24,536?bp to 199,685?bp. The genome contains 3835 protein-coding genes (CDSs), 49 tRNA genes, as well as 3 rRNA operons as 16S-23S-5S rRNA. Based on the gene annotation and Swiss-Prot analysis, a total of 15 genes belonging to 11 kinds, including silver exporting P-type ATPase (SilP), alkaline phosphatase, nitroreductase, thioredoxin reductase, NADPH dehydrogenase and glutathione peroxidase, might be related to the synthesis of AgNPs. Meanwhile, many additional genes associated with synthesis of AgNPs such as protein-disulfide isomerase, c-type cytochrome, glutathione synthase and dehydrogenase reductase were also identified.


April 21, 2020  |  

Virus-host coexistence in phytoplankton through the genomic lens

Phytoplankton-virus interactions are major determinants of geochemical cycles in the oceans. Viruses are responsible for the redirection of carbon and nutrients away from larger organisms back towards microorganisms via the lysis of microalgae in a process coined the “viral shunt”. Virus-host interactions are generally expected to follow “boom and bust” dynamics, whereby a numerically dominant strain is lysed and replaced by a virus resistant strain. Here, we isolated a microalga and its infective nucleo-cytoplasmic large DNA virus (NCLDV) concomitantly from the environment in the surface NW Mediterranean Sea, Ostreococcus mediterraneus, and show continuous growth in culture of both the microalga and the virus. Evolution experiments through single cell bottlenecks demonstrate that, in the absence of the virus, susceptible cells evolve from one ancestral resistant single cell, and vice-versa; that is that resistant cells evolve from one ancestral susceptible cell. This provides evidence that the observed sustained viral production is the consequence of a minority of virus-susceptible cells. The emergence of these cells is explained by low-level phase switching between virus-resistant and virus-susceptible phenotypes, akin to a bet hedging strategy. Whole genome sequencing and analysis of the ~14 Mb microalga and the ~200 kb virus points towards ancient speciation of the microalga within the Ostreococcus species complex and frequent gene exchanges between prasinoviruses infecting Ostreococcus species. Re-sequencing of one susceptible strain demonstrated that the phase switch involved a large 60 Kb deletion of one chromosome. This chromosome is an outlier chromosome compared to the streamlined, gene dense, GC-rich standard chromosomes, as it contains many repeats and few orthologous genes. While this chromosome has been described in three different genera, its size increments have been previously associated to antiviral immunity and resistance in another species from the same genus. Mathematical modelling of this mechanism predicts microalga-virus population dynamics consistent with the observation of continuous growth of both virus and microalga. Altogether, our results suggest a previously overlooked strategy in phytoplankton-virus interactions.


April 21, 2020  |  

The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation.

Although antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. This reservoir forms even when ART is initiated early after infection, but the dynamics of its formation are largely unknown. The viral reservoirs of individuals who initiate ART during chronic infection are generally larger and genetically more diverse than those of individuals who initiate therapy during acute infection, consistent with the hypothesis that the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting peripheral CD4+ T cells from nine HIV-positive women on therapy to viral sequences circulating in blood collected longitudinally before therapy. We found that, on average, 71% of the unique viruses induced from the post-therapy latent reservoir were most genetically similar to viruses replicating just before ART initiation. This proportion is far greater than would be expected if the reservoir formed continuously and was always long lived. We conclude that ART alters the host environment in a way that allows the formation or stabilization of most of the long-lived latent HIV-1 reservoir, which points to new strategies targeted at limiting the formation of the reservoir around the time of therapy initiation.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA.

Epstein-Barr virus (EBV) is a ubiquitous human pathogen associated with Burkitt’s lymphoma and nasopharyngeal carcinoma. Although the EBV genome harbors more than a hundred genes, a full transcription map with EBV polyadenylation profiles remains unknown. To elucidate the 3′ ends of all EBV transcripts genome-wide, we performed the first comprehensive analysis of viral polyadenylation sites (pA sites) using our previously reported polyadenylation sequencing (PA-seq) technology. We identified that EBV utilizes a total of 62?pA sites in JSC-1, 60 in Raji, and 53 in Akata cells for the expression of EBV genes from both plus and minus DNA strands; 42 of these pA sites are commonly used in all three cell lines. The majority of identified pA sites were mapped to the intergenic regions downstream of previously annotated EBV open reading frames (ORFs) and viral promoters. pA sites lacking an association with any known EBV genes were also identified, mostly for the minus DNA strand within the EBNA locus, a major locus responsible for maintenance of viral latency and cell transformation. The expression of these novel antisense transcripts to EBNA were verified by 3′ rapid amplification of cDNA ends (RACE) and Northern blot analyses in several EBV-positive (EBV+) cell lines. In contrast to EBNA RNA expressed during latency, expression of EBNA-antisense transcripts, which is restricted in latent cells, can be significantly induced by viral lytic infection, suggesting potential regulation of viral gene expression by EBNA-antisense transcription during lytic EBV infection. Our data provide the first evidence that EBV has an unrecognized mechanism that regulates EBV reactivation from latency.IMPORTANCE Epstein-Barr virus represents an important human pathogen with an etiological role in the development of several cancers. By elucidation of a genome-wide polyadenylation landscape of EBV in JSC-1, Raji, and Akata cells, we have redefined the EBV transcriptome and mapped individual polymerase II (Pol II) transcripts of viral genes to each one of the mapped pA sites at single-nucleotide resolution as well as the depth of expression. By unveiling a new class of viral lytic RNA transcripts antisense to latent EBNAs, we provide a novel mechanism of how EBV might control the expression of viral latent genes and lytic infection. Thus, this report takes another step closer to understanding EBV gene structure and expression and paves a new path for antiviral approaches.This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.


April 21, 2020  |  

Long-read amplicon denoising.

Long-read next-generation amplicon sequencing shows promise for studying complete genes or genomes from complex and diverse populations. Current long-read sequencing technologies have challenging error profiles, hindering data processing and incorporation into downstream analyses. Here we consider the problem of how to reconstruct, free of sequencing error, the true sequence variants and their associated frequencies from PacBio reads. Called ‘amplicon denoising’, this problem has been extensively studied for short-read sequencing technologies, but current solutions do not always successfully generalize to long reads with high indel error rates. We introduce two methods: one that runs nearly instantly and is very accurate for medium length reads and high template coverage, and another, slower method that is more robust when reads are very long or coverage is lower. On two Mock Virus Community datasets with ground truth, each sequenced on a different PacBio instrument, and on a number of simulated datasets, we compare our two approaches to each other and to existing algorithms. We outperform all tested methods in accuracy, with competitive run times even for our slower method, successfully discriminating templates that differ by a just single nucleotide. Julia implementations of Fast Amplicon Denoising (FAD) and Robust Amplicon Denoising (RAD), and a webserver interface, are freely available. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

Consensus and variations in cell line specificity among human metapneumovirus strains.

Human metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains. In addition, unique A2b clade HMPV strains with a 180-nucleotide duplication in the G gene (HMPV A2b180nt-dup strains) have recently been detected. In this study, we re-evaluated and compared the cell line specificity of clinical isolates of HMPV strains, including the novel HMPV A2b180nt-dup strains, and six recombinant HMPVGFP strains, including the newly generated recombinant HMPV A2b180nt-dup strain, MG0256-EGFP. Our data demonstrate that VeroE6 and LLC-MK2 cells generally showed the highest infectivity with any clinical isolates and recombinant HMPVGFP strains. Other human-derived cell lines (BEAS-2B, A549, HEK293, MNT-1, and HeLa cells) showed certain levels of infectivity with HMPV, but these were significantly lower than those of VeroE6 and LLC-MK2 cells. Also, the infectivity in these suboptimal cell lines varied greatly among HMPV strains. The variations were not directly related to HMPV genotypes, cell lines used for isolation and propagation, specific genome mutations, or nucleotide duplications in the G gene. Thus, these variations in suboptimal cell lines are likely intrinsic to particular HMPV strains.


April 21, 2020  |  

The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis.

Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, “Huang Qin,” are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4′-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its new function following recent mutations, and that four genes encoding enzymes in the 4′-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionalizations were involved in the evolution of 4′-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that are being applied to pathogenic microorganisms and viruses, constitutional disorders, pharmacogenomics, cancer, and more.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Full-length transcriptome analysis of Litopenaeus vannamei reveals transcript variants involved in the innate immune system.

To better understand the immune system of shrimp, this study combined PacBio isoform sequencing (Iso-Seq) and Illumina paired-end short reads sequencing methods to discover full-length immune-related molecules of the Pacific white shrimp, Litopenaeus vannamei. A total of 72,648 nonredundant full-length transcripts (unigenes) were generated with an average length of 2545 bp from five main tissues, including the hepatopancreas, cardiac stomach, heart, muscle, and pyloric stomach. These unigenes exhibited a high annotation rate (62,164, 85.57%) when compared against NR, NT, Swiss-Prot, Pfam, GO, KEGG and COG databases. A total of 7544 putative long noncoding RNAs (lncRNAs) were detected and 1164 nonredundant full-length transcripts (449 UniTransModels) participated in the alternative splicing (AS) events. Importantly, a total of 5279 nonredundant full-length unigenes were successfully identified, which were involved in the innate immune system, including 9 immune-related processes, 19 immune-related pathways and 10 other immune-related systems. We also found wide transcript variants, which increased the number and function complexity of immune molecules; for example, toll-like receptors (TLRs) and interferon regulatory factors (IRFs). The 480 differentially expressed genes (DEGs) were significantly higher or tissue-specific expression patterns in the hepatopancreas compared with that in other four tested tissues (FDR <0.05). Furthermore, the expression levels of six selected immune-related DEGs and putative IRFs were validated using real-time PCR technology, substantiating the reliability of the PacBio Iso-seq results. In conclusion, our results provide new genetic resources of long-read full-length transcripts data and information for identifying immune-related genes, which are an invaluable transcriptomic resource as genomic reference, especially for further exploration of the innate immune and defense mechanisms of shrimp. Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Vaccine-induced protection from homologous tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers.

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ~1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

High-Resolution Evolutionary Analysis of Within-Host Hepatitis C Virus Infection.

Despite recent breakthroughs in treatment of hepatitis C virus (HCV) infection, we have limited understanding of how virus diversity generated within individuals impacts the evolution and spread of HCV variants at the population scale. Addressing this gap is important for identifying the main sources of disease transmission and evaluating the risk of drug-resistance mutations emerging and disseminating in a population.We have undertaken a high-resolution analysis of HCV within-host evolution from 4 individuals coinfected with human immunodeficiency virus 1 (HIV-1). We used long-read, deep-sequenced data of full-length HCV envelope glycoprotein, longitudinally sampled from acute to chronic HCV infection to investigate the underlying viral population and evolutionary dynamics.We found statistical support for population structure maintaining the within-host HCV genetic diversity in 3 out of 4 individuals. We also report the first population genetic estimate of the within-host recombination rate for HCV (0.28 × 10-7 recombination/site/year), which is considerably lower than that estimated for HIV-1 and the overall nucleotide substitution rate estimated during HCV infection.Our findings indicate that population structure and strong genetic linkage shapes within-host HCV evolutionary dynamics. These results will guide the future investigation of potential HCV drug resistance adaptation during infection, and at the population scale. © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.


April 21, 2020  |  

Development of CRISPR-Cas systems for genome editing and beyond

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotech- nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstra- tion of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.


April 21, 2020  |  

RNA-seq of HaHV-1-infected abalones reveals a common transcriptional signature of Malacoherpesviruses.

Haliotid herpesvirus-1 (HaHV-1) is the viral agent causative of abalone viral ganglioneuritis, a disease that has severely affected gastropod aquaculture. Although limited, the sequence similarity between HaHV-1 and Ostreid herpesvirus-1 supported the assignment of both viruses to Malacoherpesviridae, a Herpesvirales family distantly related with other viruses. In this study, we reported the first transcriptional data of HaHV-1, obtained from an experimental infection of Haliotis diversicolor supertexta. We also sequenced the genome draft of the Chinese HaHV-1 variant isolated in 2003 (HaHV-1-CN2003) by PacBio technology. Analysis of 13 million reads obtained from 3 RNA samples at 60?hours post injection (hpi) allowed the prediction of 51 new ORFs for a total of 117 viral genes and the identification of 207 variations from the reference genome, consisting in 135 Single Nucleotide Polymorphisms (SNPs) and 72 Insertions or Deletions (InDels). The pairing of genomic and transcriptomic data supported the identification of 60 additional SNPs, representing viral transcriptional variability and preferentially grouped in hotspots. The expression analysis of HaHV-1 ORFs revealed one putative secreted protein, two putative capsid proteins and a possible viral capsid protease as the most expressed genes and demonstrated highly synchronized viral expression patterns of the 3 infected animals at 60?hpi. Quantitative reverse transcription data of 37 viral genes supported the burst of viral transcription at 30 and 60?hpi during the 72?hours of the infection experiment, and allowed the distinction between early and late viral genes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.