Pulmonary non-tuberculous mycobacterial (PNTM) infections occur in patients with chronic lung disease, but also in a distinct group of elderly women without lung defects who share a common body morphology: tall and lean with scoliosis, pectus excavatum, and mitral valve prolapse. In order to characterize the human host susceptibility to PNTM, we performed whole exome sequencing (WES) of 44 individuals in extended families of patients with active PNTM as well as 55 additional unrelated individuals with PNTM. This unique collection of familial cohorts in PNTM represents an important opportunity for a high yield search for genes that regulate mucosal immunity.…
The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition,…
For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence,…
Obtaining microbial genomes with the highest accuracy and contiguity is extremely important when exploring the functional impact of genetic and epigenetic variants on a genome-wide scale. A comprehensive view of the bacterial genome, including genes, regulatory regions, IS elements, phage integration sites, and base modifications is vital to understanding key traits such as antibiotic resistance, virulence, and metabolism. SMRT Sequencing provides complete genomes, often assembled into a single contig. Our streamlined microbial multiplexing procedure for the Sequel System, from library preparation to genome assembly, can be completed with less than 8 hours bench time. Starting with high-quality genomic DNA (gDNA),…
The UK’s National Collection of Type Cultures (NCTC) is a unique collection of more than 5,000 expertly preserved and authenticated bacterial cultures, many of historical significance. Founded in 1920, NCTC is the longest established collection of its type anywhere in the world, with a history of its own that has reflected — and contributed to — the evolution of microbiology for more than 100 years.
Our understanding of microbiology has evolved enormously over the last 150 years. Few institutions have witnessed our collective progress more closely than the National Collection of Type Cultures (NCTC). In fact, the collection itself is a record of the many milestones microbiologists have crossed, building on the discoveries of those who came before. To date, 60% of NCTC’s historic collection now has a closed, finished reference genome, thanks to PacBio Single Molecule, Real- Time (SMRT) Sequencing. We are excited to be their partner in crossing this latest milestone on their quest to improve human and animal health by understanding the…
With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel Systems, you can affordably assemble reference-quality microbial genomes that are >99.999% (Q50) accurate.
Learn how Single Molecule, Real-Time (SMRT) Sequencing and the Sequel IIe System and will accelerate your research by delivering highly accurate long reads to provide the most comprehensive view of genomes, transcriptomes and epigenomes.
Bacillus cereus is an opportunistic human pathogen causing food-borne gastrointestinal infections and non-gastrointestinal infections worldwide. The strain B. cereus FORC_013 was isolated from fried eel. Its genome was completely sequenced by PacBio technology, analyzed and compared with other complete genome sequences of Bacillus to elucidate the distinct pathogenic features of the strain isolated in South Korea. Genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding tissue-destructive exoenzymes, and pore-forming toxins. In particular, tissue-destructive (hemolysin BL, nonhaemolytic enterotoxins) and cytolytic proteins (cytolysin) were observed in the genome, which damage the plasma membrane of the epithelial cells of the small intestine…
To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic…
Acinetobacter calcoaceticus-baumannii complex isolates have been frequently associated with hospital and community infections, with A. baumannii being the most common. Other Acinetobacter spp. not belonging to this complex also cause infections in hospital settings, and the incidence has increased over the past few years. Some species of the Acinetobacter genus possess a great diversity of antibiotic resistance mechanisms, such as efflux pumps, porins, and resistance genes that can be acquired and disseminated by mobilizable genetic elements. By means of whole-genome sequencing, we describe in the clinical Acinetobacter haemolyticus strain AN54 different mechanisms of resistance that involve blaOXA-265, blaNDM-1, aphA6, aac(6′)-Ig,…
Whole genome sequencing of bacteria has become daily routine in many fields. Advances in DNA sequencing technologies and continuously dropping costs have resulted in a tremendous increase in the amounts of available sequence data. However, comprehensive in-depth analysis of the resulting data remains an arduous and time consuming task. In order to keep pace with these promising but challenging developments and to transform raw data into valuable information, standardized analyses and scalable software tools are needed. Here, we introduce ASA3P, a fully automatic, locally executable and scalable assembly, annotation and analysis pipeline for bacterial genomes. The pipeline automatically executes necessary…
Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It…
Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and…
Carbapenem-resistant Enterobacteriaceae (CRE) represent one of the most urgent threats to human health posed by antibiotic resistant bacteria. Enterobacter hormaechei and other members of the Enterobacter cloacae complex are the most commonly encountered Enterobacter spp. within clinical settings, responsible for numerous outbreaks and ultimately poorer patient outcomes. Here we applied three complementary whole genome sequencing (WGS) technologies to characterise a hospital cluster of blaIMP-4 carbapenemase-producing E. hormaechei.In response to a suspected CRE outbreak in 2015 within an Intensive Care Unit (ICU)/Burns Unit in a Brisbane tertiary referral hospital we used Illumina sequencing to determine that all outbreak isolates were sequence…