Menu
June 1, 2021  |  

Resources for advanced bioinformaticians working in plant and animal genomes with SMRT Sequencing.

Significant advances in bioinformatics tool development have been made to more efficiently leverage and deliver high-quality genome assemblies with PacBio long-read data. Current data throughput of SMRT Sequencing delivers average read lengths ranging from 10-15 kb with the longest reads exceeding 40 kb. This has resulted in consistent demonstration of a minimum 10-fold improvement in genome assemblies with contig N50 in the megabase range compared to assemblies generated using only short- read technologies. This poster highlights recent advances and resources available for advanced bioinformaticians and developers interested in the current state-of-the-art large genome solutions available as open-source code from PacBio and third-party solutions, including HGAP, MHAP, and ECTools. Resources and tools available on GitHub are reviewed, as well as datasets representing major model research organisms made publically available for community evaluation or interested developers.


June 1, 2021  |  

Impact of DNA quality on PacBio RS II read lengths.

Maximizing the read length of next generation sequencing (NGS) facilitates de novo genome assembly. Currently, the PacBio RS II system leads the industry with respect to maximum possible NGS read lengths. Amplicon Express specializes in preparation of high molecular weight, NGS-grade genomic DNA for a variety of applications, including next generation sequencing. This study was performed to evaluate the effects of gDNA quality on PacBio RS II read length.


June 1, 2021  |  

Single Molecule, Real-Time sequencing of full-length cDNA transcripts uncovers novel alternatively spliced isoforms.

In higher eukaryotic organisms, the majority of multi-exon genes are alternatively spliced. Different mRNA isoforms from the same gene can produce proteins that have distinct properties such as structure, function, or subcellular localization. Thus, the importance of understanding the full complement of transcript isoforms with potential phenotypic impact cannot be underscored. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing (avg. read length: 10-15 kb) without requiring fragmentation or post-sequencing assembly. Our open-source computational pipeline delivers high-quality, non-redundant sequences for unambiguous identification of alternative splicing events, alternative transcriptional start sites, polyA tail, and gene fusion events. The standard Iso-Seq protocol workflow available for all researchers is presented using a deep dataset of full- length cDNA sequences from the MCF-7 cancer cell line, and multiple tissues (brain, heart, and liver). Detected novel transcripts approaching 10 kb and alternative splicing events are highlighted. Even in extensively profiled samples, the method uncovered large numbers of novel alternatively spliced isoforms and previously unannotated genes.


June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

Best practices for whole-genome de novo sequencing with long-read SMRT Sequencing.

With the introduction of P6-C4 chemistry, PacBio has made significant strides with Single Molecule, Real-Time (SMRT) Sequencing . Read lengths averaging between 10 and 15 kb can be now be achieved with extreme reads in the distribution of > 60 kb. The chemistry attains a consensus accuracy of 99.999% (QV50) at 30x coverage which coupled with an increased throughput from the PacBio RS II platform (500 Mb – 1 Gb per SMRT Cell) makes larger genome projects more tractable. These combined advancements in technology deliver results that rival the quality of Sanger “clone-by-clone” sequencing efforts; resulting in closed microbial genomes and highly contiguous de novo assembly of complex eukaryotes on multi-Gbase scale using SMRT Sequencing as the standalone technology. We present here the guidelines and best practices to achieve optimal results when employing PacBio-only whole genome shotgun sequencing strategies. Specific sequencing examples for plant and animal genomes are discussed with SMRTbell library preparation and purification methods for obtaining long insert libraries to generate optimal sequencing results. The benefits of long reads are demonstrated by the highly contiguous assemblies yielding contig N50s of over 5 Mb compared to similar assemblies using next-generation short-read approaches. Finally, guidelines will be presented for planning out projects for the de novo assembly of large genomes.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

The “Art” of shotgun sequencing

2015 SMRT Informatics Developers Conference Presentation Slides: Jason Chin of PacBio highlighted some of the challenges for shotgun assembly while suggesting some potential solutions to obtain diploid assemblies, including the FALCON method.


June 1, 2021  |  

Making the most of long reads: towards efficient assemblers for reference quality, de novo reconstructions

2015 SMRT Informatics Developers Conference Presentation Slides: Gene Myers, Ph.D., Founding Director, Systems Biology Center, Max Planck Institute delivered the keynote presentation. He talked about building efficient assemblers, the importance of random error distribution in sequencing data, and resolving tricky repeats with very long reads. He also encouraged developers to release assembly modules openly, and noted that data should be straightforward to parse since sharing data interfaces is easier than sharing software interfaces.


June 1, 2021  |  

Genome and transcriptome of the refeneration-competent flatworm, Macrostomum lignano

The free-living flatworm, Macrostomum lignano, much like its better known planarian relative, Schmidtea mediterranea, has an impressive regenerative capacity. Following injury, this species has the ability to regenerate almost an entirely new organism. This is attributable to the presence of an abundant somatic stem cell population, the neoblasts. These cells are also essential for the ongoing maintenance of most tissues, as their loss leads to irreversible degeneration of the animal. This set of unique properties makes a subset of flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of Macrostomum lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ~75% of its sequence being comprised of simple repeats and transposon sequences. This has made high quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130X coverage by long sequencing reads from the PacBio platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene expression patterns during regeneration, examining pathways important to stem cell function. As a whole, our data will provide a crucial resource for the community for the study not only of invertebrate evolution and phylogeny but also of regeneration and somatic pluripotency.


June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community. Long read lengths translate to a high number of the reads harboring full genes or even full operons for downstream analysis. Here we present the results of circular-consensus sequencing on a mock metagenomic community with an abundance range of multiple orders of magnitude, and compare the results with both 16S and shotgun assembly methods. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows to elucidate meaningful information from the very low-abundance community members. For example, given the above low-input sequencing approach, a community member at 1/1,000 relative abundance would generate 100 1-2 kb sequence fragments having 99% consensus accuracy, with a high probability of containing a gene fragment useful for taxonomic classification or functional insight.


June 1, 2021  |  

SMRT Sequencing of the alala genome

Single Molecule Real-Time (SMRT) Sequencing was used to generate long reads for whole genome shotgun sequencing of the genome of the`alala (Hawaiian crow). The ‘alala is endemic to Hawaii, and the only surviving lineage of the crow family, Corvidae, in the Hawaiian Islands. The population declined to less than 20 individuals in the 1990s, and today this charismatic species is extinct in the wild. Currently existing in only two captive breeding facilities, reintroduction of the ‘alala is scheduled to begin in the Fall of 2016. Reintroduction efforts will be assisted by information from the ‘alala genome generated and assembled by SMRT Technology, which will allow detailed analysis of genes associated with immunity, behavior, and learning. Using SMRT Sequencing, we present here best practices for achieving long reads for whole genome shotgun sequencing for complex plant and animal genomes such as the ‘alala genome. With recent advances in SMRTbell library preparation, P6-C4 chemistry and 6-hour movies, the number of useable bases now exceeds 1 Gb per SMRT Cell. Read lengths averaging 10 – 15 kb can be routinely achieved, with the longest reads approaching 70 kb. Furthermore, > 25% of useable bases are in reads greater than 30 kb, advantageous for generating contiguous draft assemblies of contig N50 up to 5 Mb. De novo assemblies of large genomes are now more tractable using SMRT Sequencing as the standalone technology. We also present guidelines for planning out projects for the de novo assembly of large genomes.


June 1, 2021  |  

Cogent: Reconstructing the coding genome from full-length transcriptome sequences

For highly complex and large genomes, a well-annotated genome may be computationally challenging and costly, yet the study of alternative splicing events and gene annotations usually rely on the existence of a genome. Long-read sequencing technology provides new opportunities to sequence full-length cDNAs, avoiding computational challenges that short read transcript assembly brings. The use of single molecule, real-time sequencing from Pacific Biosciences to sequence transcriptomes (the Iso-SeqTM method), which produces de novo, high-quality, full-length transcripts, has revealed an astonishing amount of alternative splicing in eukaryotic species. With the Iso-Seq method, it is now possible to reconstruct the transcribed regions of the genome using just the transcripts themselves. We present Cogent, a tool for finding gene families and reconstructing the coding genome in the absence of a reference genome. Cogent uses k-mer similarities to first partition the transcripts into different gene families. Then, for each gene family, the transcripts are used to build a splice graph. Cogent identifies bubbles resulting from sequencing errors, minor variants, and exon skipping events, and attempts to resolve each splice graph down to the minimal set of reconstructed contigs. We apply Cogent to a Cuttlefish Iso-Seq dataset, for which there is a highly fragmented, Illumina-based draft genome assembly and little annotation. We show that Cogent successfully discovers gene families and can reconstruct the coding region of gene loci. The reconstructed contigs can then be used to visualize alternative splicing events, identify minor variants, and even be used to improve genome assemblies.


June 1, 2021  |  

Full-length cDNA sequencing for genome annotation and analysis of alternative splicing

In higher eukaryotic organisms, the majority of multi-exon genes are alternatively spliced. Different mRNA isoforms from the same gene can produce proteins that have distinct properties and functions. Thus, the importance of understanding the full complement of transcript isoforms with potential phenotypic impact cannot be understated. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing without requiring fragmentation or post-sequencing assembly. Our open-source computational pipeline delivers high-quality, non-redundant sequences for unambiguous identification of alternative splicing events, alternative transcriptional start sites, polyA tail, and gene fusion events. We applied the Iso-Seq method to the maize (Zea mays) inbred line B73. Full-length cDNAs from six diverse tissues were barcoded and sequenced across multiple size-fractionated SMRTbell libraries. A total of 111,151 unique transcripts were identified. More than half of these transcripts (57%) represented novel, sometimes tissue-specific, isoforms of known genes. In addition to the 2250 novel coding genes and 860 lncRNAs discovered, the Iso-Seq dataset corrected errors in existing gene models, highlighting the value of full-length transcripts for whole gene annotations.


June 1, 2021  |  

Targeted sequencing of genes from soybean using NimbleGen SeqCap EZ and PacBio SMRT Sequencing

Full-length gene capture solutions offer opportunities to screen and characterize structural variations and genetic diversity to understand key traits in plants and animals. Through a combined Roche NimbleGen probe capture and SMRT Sequencing strategy, we demonstrate the capability to resolve complex gene structures often observed in plant defense and developmental genes spanning multiple kilobases. The custom panel includes members of the WRKY plant-defense-signaling family, members of the NB-LRR disease-resistance family, and developmental genes important for flowering. The presence of repetitive structures and low-complexity regions makes short-read sequencing of these genes difficult, yet this approach allows researchers to obtain complete sequences for unambiguous resolution of gene models. This strategy has been applied to genomic DNA samples from soybean coupled with barcoding for multiplexing.


June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever and organ failure, but mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for this viral tolerance are unclear. Recent publications highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient, and at least some EVEs are under purifying selection, suggesting they are beneficial to the host. To characterize EVE biogenesis in a tractable system, we sequenced the Ae. aegypti cell line, Aag2, to 58-fold coverage and present a de novo assembly of the genome. The assembly contains 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, consisting of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify EVEs in the genome homologous to a range of extant viruses, many of which cluster in these regions of repetitive DNA. The contiguous assembly allows for more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.