Menu
July 7, 2019  |  

Genetic variation of Pyrenophora teres f. teres isolates in Western Australia and emergence of a Cyp51A fungicide resistance mutation

Genome-wide, unlinked, simple sequence repeat markers were used to examine genetic variation and relationships within Pyrenophora teres f. teres, a common pathogen of barley, in Western Australia. Despite the region’s geographic isolation, the isolates showed relatively high allelic variation compared to similar studies, averaging 7.11 alleles per locus. Principal component, Bayesian clustering and distance differentiation parameters provided evidence for both regional genotypic subdivision together with juxtaposing of isolates possessing different genetic backgrounds. Genotyping of fungicide resistant Cyp51A isolates indicated a single mutation event occurred followed by recombination and long-distance regional dispersal over hundreds of kilometres. Selection of recently emergent favourable alleles such as the Cyp51A mutation and a cultivar virulence may provide an explanation, at least in part, for juxtaposed genotypes. Factors affecting genotypic composition and the movement of new genotypes are discussed in the context of grower practices and pathogen epidemiology, together with the implications for resistance breeding.


July 7, 2019  |  

Draft genome sequence of Streptomyces sp. P3 isolated from potato scab diseased tubers

Streptomyces sp. P3 was isolated from potato scab diseased tubers in Pyeongchang, Gangwon-do, Republic of Korea in 2017. Here, we report the draft genome sequences of P3 with 9,851,971 bp size (71.2% GC content) of the chromosome. The genome comprises 8,548 CDS, 18 rRNA and 66 tRNA genes. Although strain P3 did not show pathogenicity both potato tuber assay and radish seedling assay, it possesses tomatinase (tomA) gene among conserved pathogenicity-related genes in well characterized pathogenic Streptomyces. Thus, the genome sequences determined in this study will be useful to understand for pathogenic evolution in Streptomyces species, which already adapted to potato scab pathogens.


July 7, 2019  |  

Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies.

Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.


July 7, 2019  |  

Complete genome sequence of Rhizobium sp. strain 11515TR, isolated from tomato rhizosphere in the Philippines.

Rhizobium sp. strain 11515TR was isolated from the rhizosphere of to- mato in Laguna, Philippines. The 7.07-Mb complete genome comprises three repli- cons, one chromosome, and two plasmids, with a G?C content of 59.4% and 6,720 protein-coding genes. The genome encodes gene clusters supporting rhizosphere processes, plant symbiosis, and secondary bioactive metabolites.


July 7, 2019  |  

Near- complete genome sequences of Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines.

Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines, are active against Bacillus subtilis subsp. subtilis KCTC 3135T. The near-complete genome sequences reported here represent a possible source of ribosomally synthesized, posttranslationally mod- ified peptides, such as lantipeptides, bacteriocins, linaridin, and a lasso peptide.


July 7, 2019  |  

Genome-wide analysis of the invertase gene family from maize.

The recent release of the maize genome (AGPv4) contains annotation errors of invertase genes and therefore the enzymes are bestly curated manually at the protein level in a comprehensible fashion The synthesis, transport and degradation of sucrose are determining factors for biomass allocation and yield of crop plants. Invertase (INV) is a key enzyme of carbon metabolism in both source and sink tissues. Current releases of the maize genome correctly annotates only two vacuolar invertases (ivr1 and ivr2) and four cell wall invertases (incw1, incw2 (mn1), incw3, and incw4). Our comprehensive survey identified 21 INV isogenes for which we propose a standard nomenclature grouped phylogenetically by amino acid similarity: three vacuolar (INVVR), eight cell wall (INVCW), and ten alkaline/neutral (INVAN) isogenes which form separate dendogram branches due to distinct molecular features. The acidic enzymes were curated for the presence of the DPN tripeptide which is coded by one of the smallest exons reported in plants. Particular attention was placed on the molecular role of INV in vascular tissues such as the nodes, internodes, leaf sheath, husk leaves and roots. We report the expression profile of most members of the maize INV family in nine tissues in two developmental stages, R1 and R3. INVCW7, INVVR2, INVAN8, INVAN9, INVAN10, and INVAN3 displayed the highest absolute expressions in most tissues. INVVR3, INVCW5, INVCW8, and INVAN1 showed low mRNA levels. Expressions of most INVs were repressed from stage R1 to R3, except for INVCW7 which increased significantly in all tissues after flowering. The mRNA levels of INVCW7 in the vegetative stem correlated with a higher transport rate of assimilates from leaves to the cob which led to starch accumulation and growth of the female reproductive organs.


July 7, 2019  |  

Complete genome sequence of soil actinobacteria Streptomyces cavourensis TJ430.

A new actinobacteria Streptomyces cavourensis TJ430 was isolated from the mountain soil collected from the southwest of China. In previous study, TJ430 showed striking bactericidal activities and strong ability of antibiotic production. Here, we report complete genome of this bacterium, consisting of 7.6?Mb linear chromosome and 0.2?Mb plasmids. It was predicted 6450 genes in chromosome and 225 genes in plasmids, as well as 12 gene islands in chromosome. Abundant genes have predicted functions in antibiotic metabolism and stress resistance. A whole-genome comparison of S. cavourensis TJ430, S. coelicolor A3(2), and S. lividans 66 indicates that TJ430 has a relatively high degree of strain specificity. The 16S rRNA phylogenetic tree shows the high identities (99.79%) of TJ430 with S. cavourensis DSM40300. TJ430 is a new and rare Streptomyces species, and analysis of its genome helps us to better understand primary metabolism mechanism of this isolate, as well as the evolutionary biology.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

Genomics, GPCRs and new targets for the control of insect pests and vectors.

The pressing need for new pest control products with novel modes of action has spawned interest in small molecules and peptides targeting arthropod GPCRs. Genome sequence data and tools for reverse genetics have enabled the prediction and characterization of GPCRs from many invertebrates. We review recent work to identify, characterize and de-orphanize arthropod GPCRs, with a focus on studies that reveal exciting new functional roles for these receptors, including the regulation of metabolic resistance. We explore the potential for insecticides targeting Class A biogenic amine-binding and peptide-binding receptors, and consider the innovation required to generate pest-selective leads for development, within the context of new PCR-targeting products to control arthropod vectors of disease.Copyright © 2018. Published by Elsevier Inc.


July 7, 2019  |  

Omics in weed science: A perspective from genomics, transcriptomics, and metabolomics approaches

Modern high-throughput molecular and analytical tools offer exciting opportunities to gain a mechanistic understanding of unique traits of weeds. During the past decade, tremendous progress has been made within the weed science discipline using genomic techniques to gain deeper insights into weedy traits such as invasiveness, hybridization, and herbicide resistance. Though the adoption of newer “omics” techniques such as proteomics, metabolomics, and physionomics has been slow, applications of these omics platforms to study plants, especially agriculturally important crops and weeds, have been increasing over the years. In weed science, these platforms are now used more frequently to understand mechanisms of herbicide resistance, weed resistance evolution, and crop–weed interactions. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding weedy traits. Although these techniques can provide robust insights about the molecular functioning of plants, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. Therefore, it is desirable to integrate the different omics technologies to give a better understanding of molecular functioning of biological systems. This multidimensional integrated approach can therefore offer new avenues for better understanding of questions of interest to weed scientists. This review offers a retrospective and prospective examination of omics platforms employed to investigate weed physiology and novel approaches and new technologies that can provide holistic and knowledge-based weed management strategies for future.


July 7, 2019  |  

Complete genome sequence of an efficient vitamin D3-hydroxylating bacterium, Pseudonocardia autotrophica NBRC 12743.

Pseudonocardia autotrophica NBRC 12743 contains a cytochrome P450 vitamin D3hydroxylase, and it is used as a biocatalyst for the commercial produc- tion of hydroxyvitamin D3, a valuable compound for medication. Here, we report the complete genome sequence of P. autotrophica NBRC 12743, which could be useful for improving the productivity of hydroxyvitamin D3.


July 7, 2019  |  

Complete genome sequence of the Arcobacter bivalviorum type strain LMG 26154.

Arcobacters are routinely recovered from marine environments, and multiple Arcobacter species have been isolated from shellfish. Arcobacter bivalviorum was recovered from mussels collected in the Ebro Delta in northeastern Spain. This report describes the complete whole-genome sequence of the A. bivalviorum type strain LMG 26154 (= F4T = CECT 7835T).


July 7, 2019  |  

Near-complete genome sequence of Ralstonia solanacearum T523, a phylotype I tomato phytopathogen isolated from the Philippines.

Ralstonia solanacearum strain T523 is the major phytopathogen causing tomato bacterial wilt in the Philippines. Here, we report the complete chromosome and draft megaplasmid genomes with predicted gene inventories supporting rhizo- sphere processes, extensive plant virulence effectors, and the production of bioac- tive signaling metabolites, such as ralstonin, micacocidin, and homoserine lactone.


July 7, 2019  |  

Complete genome sequence of the multidrug-resistant neonatal meningitis Escherichia coli serotype O75:H5:K1 strain mcjchv-1 (NMEC-O75).

Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of neonatal bacterial meningitis worldwide. We report the genome sequence of the multidrug-resistant NMEC serotype O75:H5:K1 strain mcjchv-1, which resulted in an infant’s death. The O75 serogroup is rare among NMEC isolates; therefore, this strain is considered an emergent pathogen.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.