Menu
July 7, 2019

Whole genome sequence of Pantoea ananatis R100, an antagonistic bacterium isolated from rice seed.

Pantoea ananatis is a group of bacteria, which was first reported as plant pathogen. Recently, several papers also described its biocontrol ability. In 2003, P. ananatis R100, which showed strong antagonism against several plant pathogens, was isolated from rice seeds. In this study, whole genome sequence of this strain was determined by SMRT Cell technology. The total genome size of R100 is 4,857,861bp with 4659 coding genes (CDS), 82 tRNAs and 22 rRNAs. The genome sequence of R100 may shed a light on the research of antagonism P. ananatis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Lactobacillus helveticus CAUH18, a potential probiotic strain originated from koumiss.

Here we report the complete genome sequence of Lactobacillus helveticus CAUH18, a new strain isolated from traditional fermented dairy product koumiss. Its genome has a circular 2.16Mb chromosome with no plasmid. The genome sequence indicated that this strain harbors a gene cluster involved in a novel exopolysaccharides (EPS) biosynthesis and a gene encoding cell-surface aggregation-promoting factors (APFs) to facilitate its colonization in gastrointestinal tract (GIT). This genome sequence provides a basis for further studies about its molecular genetics and probiotic functions. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea

Abstract Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.


July 7, 2019

Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen Erwinia tracheiphila.

Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019

Campylobacter fetus subspecies contain conserved type IV secretion systems on multiple genomic islands and plasmids.

The features contributing to differences in pathogenicity of the Campylobacter fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode a type IV secretion system (T4SS) and fic domain (filamentation induced by cyclic AMP) proteins, which may disrupt host cell processes. In the genomes of 27 C. fetus strains, three phylogenetically-different T4SS-encoding regions (T4SSs) were identified: one was located in both the chromosome and in extra-chromosomal plasmids; one was located exclusively in the chromosome; and one exclusively in extra-chromosomal plasmids. We observed that C. fetus strains can contain multiple T4SSs and that homologous T4SSs can be present both in chromosomal genomic islands (GI) and on plasmids in the C. fetus strains. The GIs of the chromosomally located T4SS differed mainly by the presence of fic genes, insertion sequence elements and phage-related or hypothetical proteins. Comparative analysis showed that T4SS sequences, inserted in the same locations, were conserved in the studied C. fetus genomes. Using phylogenetic analysis of the T4SSs, it was shown that C. fetus may have acquired the T4SS regions from other Campylobacter species by horizontal gene transfer. The identified T4SSs and fic genes were found in Cff and Cfv strains, although the presence of T4SSs and fic genes were significantly associated with Cfv strains. The T4SSs and fic genes could not be associated with S-layer serotypes or geographical origin of the strains.


July 7, 2019

The Mycobacterium phlei genome: expectations and surprises.

Mycobacterium phlei, a nontuberculosis mycobacterial species, was first described in 1898–1899. We present the complete genome sequence for the M. phlei CCUG21000T type strain and the draft genomes for four additional strains. The genome size for all fiveis 5.3 Mb with 69.4% Guanine-Cytosine content. This is ˜0.35 Mbp smaller than the previously reported M. phlei RIVM draft genome. The size difference is attributed partly to large bacteriophage sequence fragments in the M. phlei RIVM genome. Comparative analysis revealed the following: 1) A CRISPR system similar to Type 1E (cas3) in M. phlei RIVM; 2) genes involved in polyamine metabolism and transport (potAD, potF) that are absent in other mycobacteria, and 3) strain-specific variations in the number of s-factor genes. Moreover, M. phlei has as many as 82 mce (mammalian cell entry) homologs and many of the horizontally acquired genes in M. phlei are present in other environmental bacteria including mycobacteria that share similar habitat. Phylogenetic analysis based on 693 Mycobacterium core genes present in all complete mycobacterial genomes suggested that its closest neighbor is Mycobacterium smegmatis JS623 and Mycobacterium rhodesiae NBB3, while it is more distant to M. smegmatis mc2 155.


July 7, 2019

Complete genome sequence and methylome of Salmonella enterica subsp. enterica Cerro, a frequent dairy cow serovar.

Salmonella enterica subsp. enterica serovar Cerro is an infrequent pathogen of humans and other mammals but is frequently isolated from the hindgut of asymptomatic cattle in the United States. To further understand the genomic determinants of S. Cerro specificity for the bovine hindgut, the genome of isolate CFSAN001588 was fully sequenced and deposited in the GenBank database. Copyright © 2016 Haley et al.


July 7, 2019

Complete genome sequence of Pseudomonas syringae pv. lapsa strain ATCC 10859, isolated from infected wheat.

Pseudomonas syringae pv. lapsa is a pathovar of Pseudomonas syringae that can infect wheat. The complete genome of P. syringae pv. lapsa strain ATCC 10859 contains a 5,918,899-bp circular chromosome with 4,973 coding sequences, 16 rRNAs, 69 tRNAs, and an average GC content of 59.13%. The analysis of this genome revealed several gene clusters that are related to pathogenesis and virulence. Copyright © 2016 Kong et al.


July 7, 2019

Finished genome sequence and methylome of the cyanide-degrading Pseudomonas pseudoalcaligenes strain CECT5344 as resolved by single-molecule real-time sequencing.

Pseudomonas pseudoalcaligenes CECT5344 tolerates cyanide and is also able to utilize cyanide and cyano-derivatives as a nitrogen source under alkaline conditions. The strain is considered as candidate for bioremediation of habitats contaminated with cyanide-containing liquid wastes. Information on the genome sequence of the strain CECT5344 became available previously. The P. pseudoalcaligenes CECT5344 genome was now resequenced by applying the single molecule, real-time (SMRT(®)) sequencing technique developed by Pacific Biosciences. The complete and finished genome sequence of the strain consists of a 4,696,984 bp chromosome featuring a GC-content of 62.34%. Comparative analyses between the new and previous versions of the P. pseudoalcaligenes CECT5344 genome sequence revealed additional regions in the new sequence that were missed in the older version. These additional regions mostly represent mobile genetic elements. Moreover, five additional genes predicted to play a role in sulfoxide reduction are present in the newly established genome sequence. The P. pseudoalcaligenes CECT5344 genome sequence is highly related to the genome sequences of different Pseudomonas mendocina strains. Approximately, 70% of all genes are shared between P. pseudoalcaligenes and P. mendocina. In contrast to P. mendocina, putative pathogenicity genes were not identified in the P. pseudoalcaligenes CECT5344 genome. P. pseudoalcaligenes CECT5344 possesses unique genes for nitrilases and mercury resistance proteins that are of importance for survival in habitats contaminated with cyano- and mercury compounds. As an additional feature of the SMRT sequencing technology, the methylome of P. pseudoalcaligenes was established. Six sequence motifs featuring methylated adenine residues (m6A) were identified in the genome. The genome encodes several methyltransferases, some of which may be considered for methylation of the m6A motifs identified. The complete genome sequence of the strain CECT5344 now provides the basis for exploitation of genetic features for biotechnological purposes. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium.

Pseudomonas azotoformans is a Gram-negative bacterium and infects cereal grains, especially rice. P. azotoformans S4 from soil sample derived from Lijiang, Yunnan Province, China, appeared to be strong inhibitory activity against Fusarium fujikurio, a serious rice fungal pathogen. Here, we present the complete genome of P. azotoformans S4, which consists of 6,859,618bp with a circle chromosome, 5991 coding DNA sequences, 70 tRNA and 19 rRNA. The genomic analysis revealed that 9 candidate gene clusters are involved in the biosynthesis of secondary metabolites. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Complete genome sequence of Acinetobacter sp. TTH0-4, a cold-active crude oil degrading strain isolated from Qinghai-Tibet Plateau.

Acinetobacter sp. strain TTH0-4 was isolated from a permafrost region in Qinghai-Tibet Plateau. With its capability to degrade crude oil at low temperature, 10°C, the strain could be an excellent candidate for the bioremediation of crude oil pollution in cold areas or at cold seasons. We sequenced and annotated the whole genome to serve as a basis for further elucidation of the genetic background of this promising strain, and provide opportunities for investigating the metabolic and regulatory mechanisms and optimizing the biodegradative activity in cold environment. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Complete genome sequence of Streptococcus thermophilus MN-BM-A01, a strain with high exopolysaccharides production.

Streptococcus thermophilus MN-BM-A01 (ST MN-BM-A01) (CGMCC No. 11383) was a strain isolated from Yogurt Block in Gansu, China. The yogurt fermented with this strain has good flavor, acidity, and viscosity. Moreover, ST MN-BM-A01 could produce a high level of EPS which can confer the yogurt with improved rheological properties. We reported the complete genome sequence of ST MN-BM-A01 that contains 1,876,516bp encoding 1704 coding sequences (CDSs), 67 tRNA genes and 6 rRNA operons. The genomic sequence indicated that this strain included a 35.3-kb gene cluster involved in EPS biosynthesis. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Whole-genome sequence of Erysipelothrix larvae LV19(T) (=KCTC 33523(T)), a useful strain for arsenic detoxification, from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus.

Erysipelothrix larvae LV19(T) was preliminary isolated from the larval gut of a rhinoceros beetle, Trypoxylus dichotomus in Korea. Here, we present the whole genome sequence of E. larvae LV19(T) strain, which consisted of 2,511,486 base pairs with a GC content of 37.4% and one plasmid. Unlike other Erysipelothrix strains (SY 1027, Fujisawa and ATCC 19414), the arsenic-resistance genes were identified in LV19(T) strain. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Enterococcus faecalis LD33, a bacteriocin-producing strain.

Enterococcus faecalis LD33 strain was originally isolated from traditional naturally fermented cream in Inner Mongolia of China. Its complete genome sequence was carried out using the Illumina Hiseq and the PacBio RSII platform. The genome only has a circular chromosome and a GC content of 37.58%. Other core information shown in the genome sequencing results further insight on this bacterium’s genetic elements for bacteriocin production and the genes related to respiratory chain. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Deinococcus actinosclerus BM2(T), a bacterium with Gamma-radiation resistance isolated from soil in South Korea.

A Gram-positive, short-rod shaped and non-motile bacterium Deinococcus actinosclerus BM2(T), resistant to gamma and UV radiation, was isolated from a soil sample collected in South Korea. Strain BM2(T) showed high resistance to gamma radiation with D10 value of 9 kGy. The complete genome of D. actinosclerus BM2(T) consists of a single chromosome (3,264,334bp). The genome features showed the presence of intracellular proteases that help to eliminate radiation-induced ROS during recovery from ionizing radiation damage. Copyright © 2016 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.