Menu
April 21, 2020

The sequence and de novo assembly of Oxygymnocypris stewartii genome.

Animal genomes in the Qinghai-Tibetan Plateau provide valuable resources for scientists to understand the molecular mechanism of environmental adaptation. Tibetan fish species play essential roles in the local ecology; however, the genomic information for native fishes was still insufficient. Oxygymnocypris stewartii, belonging to Oxygymnocypris genus, Schizothoracinae subfamily, is a native fish in the Tibetan plateau living within the elevation from roughly 3,000?m to 4,200?m. In this report, PacBio and Illumina sequencing platform were used to generate ~385.3?Gb genomic sequencing data. A genome of about 1,849.2?Mb was obtained with a contig N50 length of 257.1?kb. More than 44.5% of the genome were identified as repetitive elements, and 46,400 protein-coding genes were annotated in the genome. The assembled genome can be used as a reference for future population genetic studies of O. stewartii and will improve our understanding of high altitude adaptation of fishes in the Qinghai-Tibetan Plateau.


April 21, 2020

Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes.

Bacterial plasmids carry genes that code for additional traits such as osmoregulation, CO2 fixation, antibiotic and heavy metal resistance, root nodulation and nitrogen fixation. The main objective of the current study was to identify plasmid-conferring osmoregulatory genes in bacteria isolated from rhizospheric and non-rhizospheric soils of halophytes (Salsola stocksii and Atriplex amnicola). More than 55% of halophilic bacteria from the rhizosphere and 70% from non-rhizospheric soils were able to grow at 3?M salt concentrations. All the strains showed optimum growth at 1.5-3.0?M NaCl. Bacterial strains from the Salsola rhizosphere showed maximum (31%) plasmid elimination during curing experiments as compared to bacterial strains from the Atriplex rhizosphere and non-rhizospheric soils. Two plasmid cured strains Bacillus HL2HP6 and Oceanobacillus HL2RP7 lost their ability to grow in halophilic medium, but they grew well on LB medium. The plasmid cured strains also showed a change in sensitivity to specific antibiotics. These plasmids were isolated and transformed into E. coli strains and growth response of wild-type and transformed E. coli strains was compared at 1.5-4?M NaCl concentrations. Chromosomal DNA and plasmids from Bacillus filamentosus HL2HP6 were sequenced by using high throughput sequencing approach. Results of functional analysis of plasmid sequences showed different proteins and enzymes involved in osmoregulation of bacteria, such as trehalose, ectoine synthetase, porins, proline, alanine, inorganic ion transporters, dehydrogenases and peptidases. Our results suggested that plasmid conferring osmoregulatory genes play a vital role to maintain internal osmotic balance of bacterial cells and these genes can be used to develop salt tolerant transgenic crops.Copyright © 2019 Elsevier GmbH. All rights reserved.


April 21, 2020

Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China.

Nine slow-growing rhizobia isolated from effective nodules on peanut (Arachis hypogaea) were characterized to clarify the taxonomic status using a polyphasic approach. They were assigned to the genus Bradyrhizobium on the basis of 16S rRNA sequences. MLSA of concatenated glnII-recA-dnaK genes classified them into three species represented by CCBAU 53390T, CCBAU 51670T and CCBAU 51778T, which presented the closest similarity to B. guangxiense CCBAU 53363T, B. guangdongense CCBAU 51649T and B. manausense BR 3351T, B. vignae 7-2T and B. forestalis INPA 54BT, respectively. The dDDH (digital DNA-DNA hybridization) and ANI (Average Nucleotide Identity) between the genomes of the three representative strains and type strains for the closest Bradyrhizobium species were less than 42.1% and 91.98%, respectively, below the threshold of species circumscription. Effective nodules could be induced on peanut and Lablab purpureus by all representative strains, while Vigna radiata formed effective nodules only with CCBAU 53390T and CCBAU 51778T. Phenotypic characteristics including sole carbon sources and growth features supported the phylogenetic results. Based on the genotypic and phenotypic features, strains CCBAU 53390T, CCBAU 51670T and CCBAU 51778T are designated the type strains of three novel species, for which the names Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov. are proposed, respectively.Copyright © 2019 Elsevier GmbH. All rights reserved.


April 21, 2020

The complete genome sequence of Ethanoligenens harbinense reveals the metabolic pathway of acetate-ethanol fermentation: A novel understanding of the principles of anaerobic biotechnology.

Ethanol-type fermentation is one of three main fermentation types in the acidogenesis of anaerobic treatment systems. Non-spore-forming Ethanoligenens is as a typical genus capable of ethanol-type fermentation in mixed culture (i.e. acetate-ethanol fermentation). This genus can produce ethanol, acetate, CO2, and H2 using carbohydrates, and has application potential in anaerobic bioprocesses. Here, the complete genome sequences and methylome of Ethanoligenens harbinense strains with different autoaggregative and coaggregative abilities were obtained using the PacBio single-molecule real-time sequencing platform. The genome size of E. harbinense strains was about 2.97-3.10?Mb with 55.5% G+C content. 3020-3153 genes were annotated, most of which were methylated at specific sites or motifs. The methylation types included 6mA, 4mC, and unknown types. Comparative genomic analysis demonstrated low levels of genetic similarity between E. harbinense and other well-known hydrogen-producing bacteria (i.e., Clostridium and Thermoanaerobacter) in phylogenesis. Hydrogen production of E. harbinense was catalyzed by genes that encode [FeFe]-hydrogenases and that were synthesized by three maturases of [FeFe]-H2ase. The metabolic mechanism of H2-ethanol co-production fermentation, catalyzed by pyruvate ferredoxin oxidoreductase was proposed. This study provides genetic and evolutionary information of a model genus for the further investigation of the metabolic pathway and regulatory network of ethanol-type fermentation and anaerobic bioprocesses for waste or wastewater treatment.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020

Complete genome sequence data of Flavobacterium anhuiense strain GSE09, a volatile-producing biocontrol bacterium isolated from cucumber (Cucumis sativus) root.

Flavobacterium anhuiense (previously identified as Flavobacterium johnsoniae) strain GSE09 is a volatile-producing bacterium that exhibits significant biocontrol activity against an oomycete pathogen, Phytophthora capsici, on pepper plants. Here, we report the complete genome sequence data of strain GSE09, isolated from surface-sterilized cucumber root. The genome consists of a circular 5,109,718-bp chromosome with a G + C content of 34.30%. A total of 4,138 complete coding sequences including 15 rRNA, 66 tRNA, 3 ncRNA, and 51 pseudogene sequences were retrieved. Thus, the genome sequence data of F. anhuiense GSE09 may facilitate the elucidation of many biological traits related to the biocontrol against plant pathogens.


April 21, 2020

High temperature-induced proteomic and metabolomic profiles of a thermophilic Bacillus manusensis isolated from the deep-sea hydrothermal field of Manus Basin.

Thermophiles are organisms that grow optimally at 50?°C-80?°C and studies on the survival mechanisms of thermophiles have drawn great attention. Bacillus manusensis S50-6 is the type strain of a new thermophilic species isolated from hydrothermal vent in Manus Basin. In this study, we examined the growth and global responses of S50-6 to high temperature on molecular level using multi-omics method (genomics, proteomics, and metabolomics). S50-6 grew optimally at 50?°C (Favorable, F) and poorly at 65?°C (Non-Favorable, NF); it formed spores at F but not at NF condition. At NF condition, S50-6 formed long filaments containing undivided cells. A total of 1621 proteins were identified at F and NF conditions, and 613 proteins were differentially expressed between F and NF. At NF condition, proteins of glycolysis, rRNA mature and modification, and DNA/protein repair were up-regulated, whereas proteins of sporulation and amino acid/nucleotide metabolism were down-regulated. Consistently, many metabolites associated with amino acid and nucleotide metabolic processes were down-regulated at NF condition. Our results revealed molecular strategies of deep-sea B. manusensis to survive at unfavorable high temperature and provided new insights into the thermotolerant mechanisms of thermophiles. SIGNIFICANCE: In this study, we systematically characterized the genomic, proteomic and metabolomic profiles of a thermophilic deep-sea Bacillus manusensis under different temperatures. Based on these analysis, we propose a model delineating the global responses of B. manusensis to unfavorable high temperature. Under unfavorable high temperature, glycolysis is a more important energy supply pathway; protein synthesis is subjected to more stringent regulation by increased tRNA modification; protein and DNA repair associated proteins are enhanced in production to promote heat survival. In contrast, energy-costing pathways, such as sporulation, are repressed, and basic metabolic pathways, such as amino acid and nucleotide metabolisms, are slowed down. Our results provide new insights into the thermotolerant mechanisms of thermophilic Bacillus.Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020

Global distribution of mating types shows limited opportunities for mating across populations of fungi causing boxwood blight disease.

Boxwood blight is a disease threat to natural and managed landscapes worldwide. To determine mating potential of the fungi responsible for the disease, Calonectria pseudonaviculata and C. henricotiae, we characterized their mating-type (MAT) loci. Genomes of C. henricotiae, C. pseudonaviculata and two other Calonectria species (C. leucothoes, C. naviculata) were sequenced and used to design PCR tests for mating-type from 268 isolates collected from four continents. All four Calonectria species have a MAT locus that is structurally consistent with the organization found in heterothallic ascomycetes, with just one idiomorph per individual isolate. Mating type was subdivided by species: all C. henricotiae isolates possessed the MAT1-1 idiomorph, whereas all C. pseudonaviculata isolates possessed the MAT1-2 idiomorph. To determine the potential for divergence at the MAT1 locus to present a barrier to interspecific hybridization, evolutionary analysis was conducted. Phylogenomic estimates showed that C. henricotiae and C. pseudonaviculata diverged approximately 2.1 Mya. However, syntenic comparisons, phylogenetic analyses, and estimates of nucleotide divergence across the MAT1 locus and proximal genes identified minimal divergence in this region of the genome. These results show that in North America and parts of Europe, where only C. pseudonaviculata resides, mating is constrained by the absence of MAT1-1. In regions of Europe where C. henricotiae and C. pseudonaviculata currently share the same host and geographic range, it remains to be determined whether or not these two recently diverged species are able to overcome species barriers to mate.Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020

Evaluation of the performance of copy number variant prediction tools for the detection of deletions from whole genome sequencing data.

Whole genome sequencing (WGS) has increased in popularity and decreased in cost over the past decade, rendering this approach as a viable and sensitive method for variant detection. In addition to its utility for single nucleotide variant detection, WGS data has the potential to detect Copy Number Variants (CNV) to fine resolution. Many CNV detection software packages have been developed exploiting four main types of data: read pair, split read, read depth, and assembly based methods. The aim of this study was to evaluate the efficiency of each of these main approaches in detecting germline deletions.WGS data and high confidence deletion calls for the individual NA12878 from the Genome in a Bottle consortium were the benchmark dataset. The performance of BreakDancer, CNVnator, Delly, FermiKit, and Pindel was assessed by comparing the accuracy and sensitivity of each software package in detecting deletions exceeding 1?kb.There was considerable variability in the outputs of the different WGS CNV detection programs. The best performance was seen from BreakDancer and Delly, with 92.6% and 96.7% sensitivity, respectively and 34.5% and 68.5% false discovery rate (FDR), respectively. In comparison, Pindel, CNVnator, and FermiKit were less effective with sensitivities of 69.1%, 66.0%, and 15.8%, respectively and FDR of 91.3%, 69.0%, and 31.7%, respectively. Concordance across software packages was poor, with only 27 of the total 612 benchmark deletions identified by all five methodologies.The WGS based CNV detection tools evaluated show disparate performance in identifying deletions =1?kb, particularly those utilising different input data characteristics. Software that exploits read pair based data had the highest sensitivity, namely BreakDancer and Delly. BreakDancer also had the second lowest false discovery rate. Therefore, in this analysis read pair methods (BreakDancer in particular) were the best performing approaches for the identification of deletions =1?kb, balancing accuracy and sensitivity. There is potential for improvement in the detection algorithms, particularly for reducing FDR. This analysis has validated the utility of WGS based CNV detection software to reliably identify deletions, and these findings will be of use when choosing appropriate software for deletion detection, in both research and diagnostic medicine.Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020

Plasmid analysis of Escherichia coli isolates from South Korea co-producing NDM-5 and OXA-181 carbapenemases.

Recently, Escherichia coli isolates co-producing New Delhi metallo-ß-lactamase (NDM)-5 and oxacillinase (OXA)-181 were identified in a tertiary-care hospital of South Korea. Isolate CC1702-1 was collected from urine in January 2017 and isolate CC1706-1 was recovered from a transtracheal aspirate of a hospitalized patient in May 2017. Carbapenemase genes were identified by multiplex PCR and sequencing, and whole genome sequencing was performed subsequently using the PacBio RSII system. Both E. coli isolates belonged to the same clone (ST410) and were resistant to all ß-lactams including carbapenems. We obtained whole plasmid sequences of the isolates: pCC1702-NDM-5 from CC1702-1 and pCC1706-NDM-5 and pCC1706-OXA-181 from CC1706-1. The two E. coli isolates belonged to the same clone (ST410) and they were completely resistant to all ß-lactams, as well as carbapenems. Two blaNDM-5-harboring plasmids belonged to the same incompatibility group, IncFIA/B, and consisted of 79,613?bp and 111,890?bp with 87 and 130 coding sequences, respectively. The genetic structures of the two blaNDM-5-bearing plasmids, which were distinct from the blaNDM-5-bearing plasmids from the Klebsiella pneumoniae isolates previously transmitted from the United Arab Emirates (UAE) to South Korea, differed from each other. While pCC1702-NDM-5 showed high degree of identity with the plasmid from a multidrug-resistant isolate of Citrobacter fruendii P5571 found in China, pCC1706-NDM-5 was very similar to the plasmid from a multidrug-resistant isolate of E. coli AMA1176 found in Denmark. pCC1706-OXA-181, which was a 51?kb, self-transmissible IncX3 plasmid, was identical to the E. coli plasmids pAMA1167-OXA-181 from Denmark and pOXA-181-WCHEC14828 from China. Plasmids harboring blaNDM-5 in E. coli isolates might not be transferred from K. pneumoniae isolates co-producing NDM-5 and OXA-181. They probably originated from multiple sources.Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020

Complete genome sequence of Hahella sp. KA22, a prodigiosin-producing algicidal bacterium

Hahella sp. KA22 is a gamma-proteobacteria bacterium that belongs to the family Hahellaceae and order Oceanospirillales. Strain KA22 is capable of producing prodigiosin, which is a compound with algicidal activity. It is for this reason that further investigation of the genome of strain KA22 will help in revealing the prodigiosin producing mechanism and its ecological functions. In this study, we sequenced and annotated the complete genome of Hahella sp. KA22, the second complete genome sequence of prodigiosin-producing bacteria in the family Hahellacaeae. The genome of strain KA22 is 6,927,416 base pairs in size, contains one chrome with no plasmid and predicted to contain 6167 protein-coding genes and 86 RNA-only encoding genes. Genomic analysis of Hahella sp. KA22 reveals that this strain of bacteria can be used for biological elimination or control of harmful algal blooms (HABs).


April 21, 2020

Complete genome sequence of Flavobacterium arcticum SM1502T, exhibiting adaption to the Arctic marine salty environment

Flavobacterium arcticum SM1502T, isolated from the surface seawater of King’s Fjord, Svalbard, Arctic, is an aerobic, non-flagellated, rod-shaped and yellow-pigmented bacterium belonging to the family Flavobacteriaceae. It is the first isolated Arctic Flavobacterium bacterium. To date, no genomes of Flavobacterium species isolated from the Arctic region have been sequenced. Here, we reported the complete genomic compositions and metabolic features of F. arcticum SM1502T. The genome consists of 2,970,356?bp with an average GC content of 35.0%. A total of 2652 protein-coding sequences and 50 RNA genes were identified in the genome. SM1502T had lower protein pIs with higher ratios of acidic residues to basic residues compared to the relative bacteria and contains genes related to iron transport and organic osmoprotectant uptake, which could maintain cellular osmotic balance. These related genes and protein pI characteristics indicated that SM1502T has high salt tolerance and could accommodate the changing Arctic salty environments.


April 21, 2020

Complete genome sequence of a novel aerobic denitrifying strain, Pseudomonas monteilii CY06

A novel aerobic denitrifying isolate CY06 was obtained from the Western Pacific Ocean, and it was identified as Pseudomonas monteilii. In this study, we present the complete genome sequence of strain CY06. The genome has one circular chromosome of 5,774,879?bp, with an average G?+?C content of 61.00%, and 3319 coding sequences. According to the annotation analysis, strain CY06 encodes 22 proteins related to nitrogen metabolism. It is found that CY06 has promising denitrification capacity, revealing its potential for practical use regarding N-removal applications.


April 21, 2020

The complexity of the Sclerotinia sclerotiorum pathosystem in soybean: virulence factors, resistance mechanisms, and their exploitation to control Sclerotinia stem rot

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is a globally important, yield limiting disease of soybean. Progress has been made in our understanding of this pathosystem at the plant level, such as the key role of oxalic acid in disease development and the importance of cell wall-degrading enzymes and other secreted proteins. Unfortunately, advances have largely focused on the fungal side of this interaction and only provide glimpses into the plant mechanisms governing resistance to this pathogen. With the absence of commercially available resistant soybeans, chemical and cultural solutions are being used by farmers to manage SSR with limited success. Additional research is needed to identify S. sclerotiorum resistance mechanisms that can be exploited to improve genetic resistance in soybean and decrease reliance on spray regimes. Technologies such as transgenics and RNAi could be exploited to improve the level of resistance to S. sclerotiorum in soybean. This review offers insight into the hurdles of managing SSR at the plant level and potential solutions that might be adopted in the future.


April 21, 2020

Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host.

The Aquimarina genus is widely distributed throughout the marine environment, however little is understood regarding its ecological role, particularly when in association with eukaryotic hosts. Here, we examine the genomes of two opportunistic pathogens, Aquimarina sp. AD1 and BL5, and a non-pathogenic strain Aquimarina sp. AD10, that were isolated from diseased individuals of the red alga Delisea pulchra. Each strain encodes multiple genes for the degradation of marine carbohydrates and vitamin biosynthesis. These traits are hypothesised to promote nutrient exchange between the Aquimarina strains and their algal host, facilitating a close symbiotic relationship. Moreover, each strain harbours the necessary genes for the assembly of a Type 9 Secretion System (T9SS) and the associated gliding motility apparatus. In addition to these common features, pathogenic strains AD1 and BL5, encode genes for the production of flexirubin type pigments and a number of unique non-ribosomal peptide synthesis (NRPS) gene clusters, suggesting a role for these uncharacterised traits in virulence. This study provides valuable insight into the potential ecological role of Aquimarina in the marine environment and the complex factors driving pathogenesis and symbiosis in this genus.Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020

The complete genome sequence of the denitrifying bacterium Marinobacter sp. Arc7-DN-1 isolated from Arctic Ocean sediment

The general features and genome characteristics of the denitrifying bacterium Marinobacter sp. Arc7-DN-1, isolated from Arctic Ocean sediment, are described. Marinobacter sp. Arc7-DN-1 uses NO3- or NH4+ as the sole nitrogen source to grow at low temperatures. The strain can grow at a wide range of temperatures (0–30?°C) and NaCl concentration (15–90‰). The genome has one circular chromosome of 4,300,456?bp (57.64?mol%?G?+?C content), consisting of 4012 coding genes, including 50 tRNAs and three rRNA operons as 16S-23S-5S rRNA. On the basis of the KEGG analysis, strain Arc7-DN-1 encodes 43 proteins related to nitrogen metabolism, including a complete denitrifying pathway and an assimilatory nitrate reduction pathway.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.