Menu
April 21, 2020

Diffusely Adherent Escherichia coli Strains Isolated from Healthy Carriers Suppress Cytokine Secretions of Epithelial Cells Stimulated by Inflammatory Substances.

Diarrheagenicity of diffusely adherent Escherichia coli (DAEC) remains controversial. Previously, we found that motile DAEC strains isolated from diarrheal patients induced high levels of interleukin 8 (IL-8) secretion via Toll-like receptor 5 (TLR5). However, DAEC strains from healthy carriers hardly induced IL-8 secretion, irrespective of their possessing flagella. In this study, we demonstrated that SK1144, a DAEC strain from a healthy carrier, suppressed IL-8 and IL-6 secretion from human epithelial cell lines. Suppression of IL-8 in human embryonic kidney (HEK293) cells that were transformed to express TLR5 was observed not only upon inflammatory stimulation by flagellin but also in response to tumor necrosis factor alpha (TNF-a) and phorbol myristate acetate (PMA), despite the fact that the TNF-a- and PMA-induced inflammatory pathways reportedly are not TLR5 mediated. SK1144 neither decreased IL-8 transcript accumulation nor increased intracellular retention of IL-8. No suppression was observed when the bacteria were cultured in Transwell cups above the epithelial cells; however, a nonadherent bacterial mutant (lacking the afimbrial adhesin gene) still inhibited IL-8 secretion. Direct contact between the bacteria and epithelial cells was necessary, but diffuse adhesion was dispensable for the inhibitory effects. Infection in the presence of chloramphenicol did not suppress cytokine release by the epithelial cells, suggesting that suppression depended on effectors synthesized de novo Inflammatory suppression was attenuated with infection by a bacterial mutant deleted for hcp (encoding a component of a type VI secretion system). In conclusion, DAEC strains from healthy carriers impede epithelial cell cytokine secretion, possibly by interfering with translation via the type VI secretion system.Copyright © 2018 American Society for Microbiology.


April 21, 2020

Complete Sequence of a Novel Multidrug-Resistant Pseudomonas putida Strain Carrying Two Copies of qnrVC6.

This study aimed at identification and characterization of a novel multidrug-resistant Pseudomonas putida strain Guangzhou-Ppu420 carrying two copies of qnrVC6 isolated from a hospital in Guangzhou, China, in 2012. Antimicrobial susceptibility was tested by Vitek2™ Automated Susceptibility System and Etest™ strips, and whole-genome sequencing facilitated analysis of its multidrug resistance. The genome has a length of 6,031,212?bp and an average G?+?C content of 62.01%. A total of 5,421 open reading frames were identified, including eight 5S rRNA, seven 16S rRNA, and seven 23S rRNA, and 76 tRNA genes. Importantly, two copies of qnrVC6 gene with three ISCR1 around, a blaVIM-2 carrying integron In528, a novel gcu173 carrying integron In1348, and six antibiotic resistance genes were identified. This is the first identification of two copies of the qnrVC6 gene in a single P. putida isolate and a class 1 integron In1348.


April 21, 2020

Critical length in long-read resequencing

Long-read sequencing has substantial advantages for structural variant discovery and phasing of vari- ants compared to short-read technologies, but the required and optimal read length has not been as- sessed. In this work, we used long reads simulated from human genomes and evaluated structural vari- ant discovery and variant phasing using current best practicebioinformaticsmethods.Wedeterminedthatoptimal discovery of structural variants from human genomes can be obtained with reads of minimally 20 kb. Haplotyping variants across genes only reaches its optimum from reads of 100 kb. These findings are important for the design of future long-read sequenc- ing projects.


April 21, 2020

The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections.

The rodent Peromyscus leucopus is the natural reservoir of several tick-borne infections, including Lyme disease. To expand the knowledge base for this key species in life cycles of several pathogens, we assembled and scaffolded the P. leucopus genome. The resulting assembly was 2.45 Gb in total length, with 24 chromosome-length scaffolds harboring 97% of predicted genes. RNA sequencing following infection of P. leucopus with Borreliella burgdorferi, a Lyme disease agent, shows that, unlike blood, the skin is actively responding to the infection after several weeks. P. leucopus has a high level of segregating nucleotide variation, suggesting that natural resistance alleles to Crispr gene targeting constructs are likely segregating in wild populations. The reference genome will allow for experiments aimed at elucidating the mechanisms by which this widely distributed rodent serves as natural reservoir for several infectious diseases of public health importance, potentially enabling intervention strategies.


April 21, 2020

De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication.

For over a thousand years, the common goldfish (Carassius auratus) was raised throughout Asia for food and as an ornamental pet. As a very close relative of the common carp (Cyprinus carpio), goldfish share the recent genome duplication that occurred approximately 14 million years ago in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies provides an exciting opportunity to link genotype to phenotype and to understand the dynamics of genome evolution and speciation. We generated a high-quality draft sequence and gene annotations of a “Wakin” goldfish using 71X PacBio long reads. The two subgenomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged substantially across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression levels across all tissues, while loss of conserved noncoding elements determined expression variance between different tissues. This assembly provides an important resource for comparative genomics and understanding the causes of goldfish variants.


April 21, 2020

The comparative genomics and complex population history of Papio baboons.

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence, hybridization, and reticulation. These results help inform our understanding of similar cases, including modern humans, Neanderthals, Denisovans, and other ancient hominins.


April 21, 2020

Decreased metabolism and increased tolerance to extreme environments in Staphylococcus warneri during long-term spaceflight.

Many studies have shown that the space environment can affect bacteria by causing a range of mutations. However, to date, few studies have explored the effects of long-term spaceflight (>1 month) on bacteria. In this study, a Staphylococcus warneri strain that was isolated from the Shenzhou-10 spacecraft and had experienced a spaceflight (15 days) was carried into space again. After a 64-day flight, combined phenotypic, genomic, transcriptomic, and proteomic analyses were performed to compare the influence of the two spaceflights on this bacterium. Compared with short-term spaceflight, long-term spaceflight increased the biofilm formation ability of S. warneri and the cell wall resistance to external environmental stress but reduced the sensitivity to chemical stimulation. Further analysis showed that these changes might be associated with the significantly upregulated gene expression of the phosphotransferase system, which regulates the metabolism of sugars, including glucose, mannose, fructose, and cellobiose. The mutation of S. warneri caused by the 15-day spaceflight was limited at the phenotype and gene level after cultivation on the ground. After 79 days of spaceflight, significant changes in S. warneri were observed. The phosphotransferase system of S. warneri was upregulated by long-term space stimulation, which resulted in a series of changes in the cell wall, biofilm, and chemical sensitivity, thus enhancing the resistance and adaptability of the bacterium to the external environment. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020

Profiling the genome-wide landscape of tandem repeat expansions.

Tandem repeat (TR) expansions have been implicated in dozens of genetic diseases, including Huntington’s Disease, Fragile X Syndrome, and hereditary ataxias. Furthermore, TRs have recently been implicated in a range of complex traits, including gene expression and cancer risk. While the human genome harbors hundreds of thousands of TRs, analysis of TR expansions has been mainly limited to known pathogenic loci. A major challenge is that expanded repeats are beyond the read length of most next-generation sequencing (NGS) datasets and are not profiled by existing genome-wide tools. We present GangSTR, a novel algorithm for genome-wide genotyping of both short and expanded TRs. GangSTR extracts information from paired-end reads into a unified model to estimate maximum likelihood TR lengths. We validate GangSTR on real and simulated data and show that GangSTR outperforms alternative methods in both accuracy and speed. We apply GangSTR to a deeply sequenced trio to profile the landscape of TR expansions in a healthy family and validate novel expansions using orthogonal technologies. Our analysis reveals that healthy individuals harbor dozens of long TR alleles not captured by current genome-wide methods. GangSTR will likely enable discovery of novel disease-associated variants not currently accessible from NGS. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020

Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane-bound, magnesium/cobalt efflux protein.

Lactic acid bacteria produce a variety of antimicrobial peptides known as bacteriocins. Most bacteriocins are understood to kill sensitive bacteria through receptor-mediated disruptions. Here, we report on the identification of the Lactobacillus plantarum plantaricin EF (PlnEF) receptor. Spontaneous PlnEF-resistant mutants of the PlnEF-indicator strain L. plantarum NCIMB 700965 (LP965) were isolated and confirmed to maintain cellular ATP levels in the presence of PlnEF. Genome comparisons resulted in the identification of a single mutated gene annotated as the membrane-bound, magnesium/cobalt efflux protein CorC. All isolates contained a valine (V) at position 334 instead of a glycine (G) in a cysteine-ß-synthase domain at the C-terminal region of CorC. In silico template-based modeling of this domain indicated that the mutation resides in a loop between two ß-strands. The relationship between PlnEF, CorC, and metal homeostasis was supported by the finding that PlnEF-resistance was lost when PlnEF was applied together with high concentrations of Mg2+ , Co2+ , Zn2+ , or Cu2+ . Lastly, PlnEF sensitivity was increased upon heterologous expression of LP965 corC but not the G334V CorC mutant in the PlnEF-resistant strain Lactobacillus casei BL23. These results show that PlnEF kills sensitive bacteria by targeting CorC. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020

Genome and transcriptome analysis of Bacillus velezensisBS-37, an efficient surfactin producer from glycerol, in response to d-/l-leucine.

Surfactin is one of the most widely studied biosurfactants due to its many potential applications in different fields. In the present study, Bacillus velezensis BS-37, initially identified as a strain of Bacillus subtilis, was used to efficiently produce surfactin with the addition of glycerol, an inexpensive by-product of biodiesel production. After 36 hr of growth in glycerol medium, the total surfactin concentration reached more than 1,000 mg/L, which was two times higher than that in sucrose medium. Moreover, the addition of l- and d-Leu to the culture medium had opposite effects on surfactin production by BS-37. While surfactin production increased significantly to nearly 2,000 mg/L with the addition of 10 mM l-Leu, it was dramatically reduced to about 250 mg/L with the addition of 10 mM d-Leu. To systemically elucidate the mechanisms influencing the efficiency of this biosynthesis process, we sequenced the genome of BS-37 and analyzed changes of the transcriptome in glycerol medium in response to d-/l-leucine. The RPKM analysis of the transcriptome of BS-37 showed that the transcription levels of genes encoding modular surfactin synthase, the glycerol utilization pathway, and branched-chain amino acid (BCAA) synthesis pathways were all at a relatively high level, which may offered an explanation why this strain can efficiently use glycerol to produce surfactin with a high yield. Neither l-Leu nor d-Leu had a significant effect on the expression of genes in these pathways, indicating that l-Leu plays an important role as a precursor or substrate involved in surfactin production, while d-Leu appears to act as a competitive inhibitor. The results of the present study provide new insights into the synthesis of surfactin and ways of its regulation, and enrich the genomic and transcriptomic resources available for the construction of high-producing strains. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020

Aquella oligotrophica gen. nov. sp. nov.: A new member of the family Neisseriaceae isolated from laboratory tap water.

A bacterial strain designated as P08T was isolated from laboratory tap water during a water quality assessment in University of Malaya, Malaysia. The strain was a Gram-negative, rod-shaped, nonmotile, and aerobic bacterium. Complete genome of P08T comprised of a 2,820,660 bp chromosome with a G + C content of 36.43%. Both 16S rRNA phylogeny and phylogenetic tree inferred from the core gene matrix demonstrated that P08T formed a hitherto unknown subline within the family Neisseriaceae. Ortho average nucleotide identity (OrthoANI) values and the percentage of conserved proteins (POCP) calculated from complete genome sequence indicated low relatedness between P08T and its phylogenetic neighbors. Respiratory quinone analysis revealed Q-8 as the only detectable quinone. The predominant cellular fatty acids were identified as C14:0 , iso-C15:0 , and summed feature 3 (C16:1 ?7c/C16:1 ?6c). The polar lipids consisted of uncharacterized aminolipid, phosphatidylglycerol, and phosphatidylethanolamine. All aspects of phenotypic and phylogenetic data suggested that strain P08T represents a novel genus within family Neisseriaceae, for which the name Aquella gen. nov. is proposed. The type species of the genus is Aquella oligotrophica sp. nov., and the type strain is P08T (=LMG 29629T =DSM 100970T ). © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020

Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies.

Massively parallel DNA sequencing opens up opportunities for bridging multiple temporal and spatial dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms. Here, we identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics focusing on insects, which arguably constitute the most diverse and ecologically important group among all animals. We suggest 10 simple rules that provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through the study of insect genomics. To this end, we review relevant literature on biodiversity and evolutionary research in the field of entomology. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or molecular biology. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity.


April 21, 2020

Whole-genome comparisons of Penicillium spp. reveals secondary metabolic gene clusters and candidate genes associated with fungal aggressiveness during apple fruit decay.

Blue mold is a postharvest rot of pomaceous fruits caused by Penicillium expansum and a number of other Penicillium species. The genome of the highly aggressive P. expansum strain R19 was re-sequenced and analyzed together with the genome of the less aggressive P. solitum strain RS1. Whole genome scale similarities and differences were examined. A phylogenetic analysis of P. expansum, P. solitum, and several closely related Penicillium species revealed that the two pathogens isolated from decayed apple with blue mold symptoms are not each other’s closest relatives. Among a total of 10,560 and 10,672 protein coding sequences respectively, a comparative genomics analysis revealed 41 genes in P. expansum R19 and 43 genes in P. solitum RS1 that are unique to these two species. These genes may be associated with pome fruit-fungal interactions, subsequent decay processes, and mycotoxin accumulation. An intact patulin gene cluster consisting of 15 biosynthetic genes was identified in the patulin producing P. expansum strain R19, while only a remnant, seven-gene cluster was identified in the patulin-deficient P. solitum strain. However, P. solitum contained a large number of additional secondary metabolite gene clusters, indicating that this species has the potential capacity to produce an array of known as well as not-yet-identified products of possible toxicological or biotechnological interest.


April 21, 2020

Hidden genomic evolution in a morphospecies-The landscape of rapidly evolving genes in Tetrahymena.

A morphospecies is defined as a taxonomic species based wholly on morphology, but often morphospecies consist of clusters of cryptic species that can be identified genetically or molecularly. The nature of the evolutionary novelty that accompanies speciation in a morphospecies is an intriguing question. Morphospecies are particularly common among ciliates, a group of unicellular eukaryotes that separates 2 kinds of nuclei-the silenced germline nucleus (micronucleus [MIC]) and the actively expressed somatic nucleus (macronucleus [MAC])-within a common cytoplasm. Because of their very similar morphologies, members of the Tetrahymena genus are considered a morphospecies. We explored the hidden genomic evolution within this genus by performing a comprehensive comparative analysis of the somatic genomes of 10 species and the germline genomes of 2 species of Tetrahymena. These species show high genetic divergence; phylogenomic analysis suggests that the genus originated about 300 million years ago (Mya). Seven universal protein domains are preferentially included among the species-specific (i.e., the youngest) Tetrahymena genes. In particular, leucine-rich repeat (LRR) genes make the largest contribution to the high level of genome divergence of the 10 species. LRR genes can be sorted into 3 different age groups. Parallel evolutionary trajectories have independently occurred among LRR genes in the different Tetrahymena species. Thousands of young LRR genes contain tandem arrays of exactly 90-bp exons. The introns separating these exons show a unique, extreme phase 2 bias, suggesting a clonal origin and successive expansions of 90-bp-exon LRR genes. Identifying LRR gene age groups allowed us to document a Tetrahymena intron length cycle. The youngest 90-bp exon LRR genes in T. thermophila are concentrated in pericentromeric and subtelomeric regions of the 5 micronuclear chromosomes, suggesting that these regions act as genome innovation centers. Copies of a Tetrahymena Long interspersed element (LINE)-like retrotransposon are very frequently found physically adjacent to 90-bp exon/intron repeat units of the youngest LRR genes. We propose that Tetrahymena species have used a massive exon-shuffling mechanism, involving unequal crossing over possibly in concert with retrotransposition, to create the unique 90-bp exon array LRR genes.


April 21, 2020

Rapid antigen diversification through mitotic recombination in the human malaria parasite Plasmodium falciparum.

Malaria parasites possess the remarkable ability to maintain chronic infections that fail to elicit a protective immune response, characteristics that have stymied vaccine development and cause people living in endemic regions to remain at risk of malaria despite previous exposure to the disease. These traits stem from the tremendous antigenic diversity displayed by parasites circulating in the field. For Plasmodium falciparum, the most virulent of the human malaria parasites, this diversity is exemplified by the variant gene family called var, which encodes the major surface antigen displayed on infected red blood cells (RBCs). This gene family exhibits virtually limitless diversity when var gene repertoires from different parasite isolates are compared. Previous studies indicated that this remarkable genome plasticity results from extensive ectopic recombination between var genes during mitotic replication; however, the molecular mechanisms that direct this process to antigen-encoding loci while the rest of the genome remains relatively stable were not determined. Using targeted DNA double-strand breaks (DSBs) and long-read whole-genome sequencing, we show that a single break within an antigen-encoding region of the genome can result in a cascade of recombination events leading to the generation of multiple chimeric var genes, a process that can greatly accelerate the generation of diversity within this family. We also found that recombinations did not occur randomly, but rather high-probability, specific recombination products were observed repeatedly. These results provide a molecular basis for previously described structured rearrangements that drive diversification of this highly polymorphic gene family.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.