X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, November 7, 2019

AGBT Conference: Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Jonas Korlach, CSO of PacBio, discusses the revival of finished genomes the microbial community will see with long read data, emphasizing that for certain organisms such as rapidly evolving microbes, having a de novo finished genome will be more useful than creating a draft based on a previous related reference genome. Korlach describes two bioinformatic methods from PacBio, a hierarchical genome assembly process (HGAP) and an consensus caller (Quiver), which are used to generate finished genomes from just long-read PacBio data, with final genome sequence accuracies over 99.999%. Korlach demonstrates the ability of PacBio data to generate closed, high-quality de…

Read More »

Thursday, November 7, 2019

ASM PacBio Workshop: Large-scale analysis of restriction-modification in systems using SMRT Sequencing

Brian Anton from New England BioLabs presents data on methylation analysis using SMRT Sequencing. He describes both restriction-modification systems and orphan methylases, noting that the number of methylases characterized has more than tripled since the introduction of SMRT Sequencing. The presentation includes a phylogenetic analysis of methyltransferase genes

Read More »

Thursday, November 7, 2019

AGBT Conference: Automated de novo genome assemblies and bacterial epigenomes using PacBio sequencing

In this AGBT plenary talk, Jonas Korlach presented a number of collaborative studies between PacBio and other institutions to make use of highly accurate, long-read sequence data, which has led to a revival of finished genomes. Examples from the infectious disease or pathogen realm included Pertussis, Salmonella, and Listeria, all of which now have closed genomes from PacBio-generated data. Korlach also reported on epigenomic information in Salmonella and Listeria, indicating potential new forms of DNA modifications.

Read More »

Thursday, November 7, 2019

Customer Experience: PacBio at Sanger Institute – de novo assembly, methylation analysis, and detection of rare variants

Harold Swerdlow, who formerly ran the R&D department at Wellcome Trust Sanger Institute, discusses the Sanger team’s use of the PacBio RS sequencer. He says the system is uniquely suited for de novo sequencing and genome assembly, methylation pattern identification, and low-level variant detection because of its long reads and high-accuracy, single-molecule sequencing. At Sanger, that makes a real difference for the large-scale projects they have in cancer biology, pathogen sequencing, and human genetics.

Read More »

Thursday, November 7, 2019

Webinar: Automating PacBio 10 kb template preparation

PacBio scientists Kristi Kim and Michael Weiand present on high-throughput solutions for sample preparation including 10 kb template preparation, high-throughput PacBio RS II sample prep kits, and compatible automated liquid handling platforms.

Read More »

Thursday, November 7, 2019

Webinar: Gain new insights in genome and transcriptome research with >10,000 bp reads

Jonas Korlach, CSO of PacBio, discusses the scientific value of >10 kb, unbiased sequencing reads for an expanding range of applications. Single molecule, real-time (SMRT) Sequencing technology has rapidly advanced in read lengths, throughput and adoption in the past year – a review of published work from a variety of researchers utilizing these new capabilities is also conducted.

Read More »

Thursday, November 7, 2019

Seminar: Optimizing eukaryotic de novo genome assembly with long-read sequencing

This seminar features great hands-on information and best practices for analyzing SMRT Sequencing data for eukaryotic genome assembly. Michael Schatz provides an overview of the assembly tools, provides recommendations for when to use each one, and discusses the challenges of short-read assemblies. James Gurtowski gives an in-depth overview of hybrid assemblies methods, where short read data are used used to correct errors in longer reads. Finally, Sergey Koren presents on chromosome-scale assembly, including the MinHash Alignment Process (MHAP) he developed to dramatically reduce the computational processing power required for genome assemblies.

Read More »

Thursday, November 7, 2019

PAG PacBio Workshop: Resolving the complexity of genomic and epigenomic variations in arabidopsis

Chongyuan Luo from the Salk Institute for Biological Studies describes sequencing three strains of Arabidopsis thaliana using PacBio technology. The goal: uncover structural variants that have been missed by short-read and other sequencers. Luo notes that PacBio sequencing provides highly accurate SNP detection and also extends the mappability of reads beyond what is possible with short-read data, producing better and more accurate assemblies.

Read More »

1 2 3 4 354

Subscribe for blog updates:

Archives