Menu
September 22, 2019

Long-read whole genome sequencing and comparative analysis of six strains of the human pathogen Orientia tsutsugamushi.

Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species.We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia.Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.


September 22, 2019

The mutation rate and the age of the sex chromosomes in Silene latifolia.

Many aspects of sex chromosome evolution are common to both plants and animals [1], but the process of Y chromosome degeneration, where genes on the Y become non-functional over time, may be much slower in plants due to purifying selection against deleterious mutations in the haploid gametophyte [2, 3]. Testing for differences in Y degeneration between the kingdoms has been hindered by the absence of accurate age estimates for plant sex chromosomes. Here, we used genome resequencing to estimate the spontaneous mutation rate and the age of the sex chromosomes in white campion (Silene latifolia). Screening of single nucleotide polymorphisms (SNPs) in parents and 10 F1 progeny identified 39 de novo mutations and yielded a rate of 7.31 × 10-9 (95% confidence interval: 5.20 × 10-9 – 8.00 × 10-9) mutations per site per haploid genome per generation. Applying this mutation rate to the synonymous divergence between homologous X- and Y-linked genes (gametologs) gave age estimates of 11.00 and 6.32 million years for the old and young strata, respectively. Based on SNP segregation patterns, we inferred which genes were Y-linked and found that at least 47% are already dysfunctional. Applying our new estimates for the age of the sex chromosomes indicates that the rate of Y degeneration in S. latifolia is nearly 2-fold slower when compared to animal sex chromosomes of a similar age. Our revised estimates support Y degeneration taking place more slowly in plants, a discrepancy that may be explained by differences in the life cycles of animals and plants. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019

Characterization of a novel multidrug resistance plasmid pSGB23 isolated from Salmonella enterica subspecies enterica serovar Saintpaul.

Salmonella enterica subspecies enterica serovar Saintpaul (S. Saintpaul) is an important gut pathogen which causes salmonellosis worldwide. Although intestinal salmonellosis is usually self-limiting, it can be life-threatening in children, the elderlies and immunocompromised patients. Appropriate antibiotic treatment is therefore required for these patients. However, the efficacy of many antibiotics on S. enterica infections has been greatly compromised due to spreading of multidrug resistance (MDR) plasmids, which poses serious threats on public health and needs to be closely monitored. In this study, we sequenced and fully characterized an S. enterica MDR plasmid pSGB23 isolated from chicken.Complete genome sequence analysis revealed that S. Saintpaul strain SGB23 harbored a 254 kb megaplasmid pSGB23, which carries 11 antibiotic resistance genes responsible for resistance to 9 classes of antibiotics and quaternary ammonium compounds that are commonly used to disinfect food processing facilities. Furthermore, we found that pSGB23 carries multiple conjugative systems, which allow it to spread into other Enterobacteriaceae spp. by self-conjugation. It also harbors multiple types of replicons and plasmid maintenance and addictive systems, which explains its broad host range and stable inheritance.We report here a novel MDR plasmid pSGB23 harboured by S. enterica. To our knowledge, it carried the greatest number of antibiotic resistance genes with the broadest range of resistance spectrum among S. enterica MDR plasmids identified so far. The isolation of pSGB23 from food sources is worrisome, while surveillance on its further spreading will be carried out based on the findings reported in this study.


September 22, 2019

Homogenization of sub-genome secretome gene expression patterns in the allodiploid fungus Verticillium longisporum

Allopolyploidization, genome duplication through interspecific hybridization, is an important evolutionary mechanism that can enable organisms to adapt to environmental changes or stresses. The increased adaptive potential of allopolyploids can be particularly relevant for plant pathogens in their ongoing quest for host immune response evasion. To this end, plant pathogens secrete a plethora of molecules that enable host colonization. Allodiploidization has resulted in the new plant pathogen Verticillium longisporum that infects different hosts than haploid Verticillium species. To reveal the impact of allodiploidization on plant pathogen evolution, we studied the genome and transcriptome dynamics of V. longisporum using next-generation sequencing. V. longisporum genome evolution is characterized by extensive chromosomal rearrangements, between as well as within parental chromosome sets, leading to a mosaic genome structure. In comparison to haploid Verticillium species, V. longisporum genes display stronger signs of positive selection. The expression patterns of the two sub-genomes show remarkable resemblance, suggesting that the parental gene expression patterns homogenized upon hybridization. Moreover, whereas V. longisporum genes encoding secreted proteins frequently display differential expression between the parental sub-genomes in culture medium, expression patterns homogenize upon plant colonization. Collectively, our results illustrate of the adaptive potential of allodiploidy mediated by the interplay of two sub-genomes. Author summary Hybridization followed by whole-genome duplication, so-called allopolyploidization, provides genomic flexibility that is beneficial for survival under stressful conditions or invasiveness into new habitats. Allopolyploidization has mainly been studied in plants, but also occurs in other organisms, including fungi. Verticillium longisporum, an emerging fungal pathogen on brassicaceous plants, arose by allodiploidization between two Verticillium spp. We used comparative genomics to reveal the plastic nature of the V. longisporum genomes, showing that parental chromosome sets recombined extensively, resulting in a mosaic genome pattern. Furthermore, we show that non-synonymous substitutions frequently occurred in V. longisporum. Moreover, we reveal that expression patterns of genes encoding secreted proteins homogenized between the V. longisporum sub-genomes upon plant colonization. In conclusion, our results illustrate the large adaptive potential upon genome hybridization for fungi mediated by genomic plasticity and interaction between sub-genomes.


September 22, 2019

Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo.

Luo-han-guo (Siraitia grosvenorii), also called monk fruit, is a member of the Cucurbitaceae family. Monk fruit has become an important area for research because of the pharmacological and economic potential of its noncaloric, extremely sweet components (mogrosides). It is also commonly used in traditional Chinese medicine for the treatment of lung congestion, sore throat, and constipation. Recently, a single reference genome became available for monk fruit, assembled from 36.9x genome coverage reads via Illumina sequencing platforms. This genome assembly has a relatively short (34.2 kb) contig N50 length and lacks integrated annotations. These drawbacks make it difficult to use as a reference in assembling transcriptomes and discovering novel functional genes.Here, we offer a new high-quality draft of the S. grosvenorii genome assembled using 31 Gb (~73.8x) long single molecule real time sequencing reads and polished with ~50 Gb Illumina paired-end reads. The final genome assembly is approximately 469.5 Mb, with a contig N50 length of 432,384 bp, representing a 12.6-fold improvement. We further annotated 237.3 Mb of repetitive sequence and 30,565 consensus protein coding genes with combined evidence. Phylogenetic analysis showed that S. grosvenorii diverged from members of the Cucurbitaceae family approximately 40.9 million years ago. With comprehensive transcriptomic analysis and differential expression testing, we identified 4,606 up-regulated genes in the early fruit compared to the leaf, a number of which were linked to metabolic pathways regulating fruit development and ripening.The availability of this new monk fruit genome assembly, as well as the annotations, will facilitate the discovery of new functional genes and the genetic improvement of monk fruit.


September 22, 2019

Transcriptional regulation of cysteine and methionine metabolism in Lactobacillus paracasei FAM18149.

Lactobacillus paracasei is common in the non-starter lactic acid bacteria (LAB) community of raw milk cheeses. This species can significantly contribute to flavor formation through amino acid metabolism. In this study, the DNA and RNA of L. paracasei FAM18149 were sequenced using next-generation sequencing technologies to reconstruct the metabolism of the sulfur-containing amino acids cysteine and methionine. Twenty-three genes were found to be involved in cysteine biosynthesis, the conversion of cysteine to methionine and vice versa, the S-adenosylmethionine recycling pathway, and the transport of sulfur-containing amino acids. Additionally, six methionine-specific T-boxes and one cysteine-specific T-box were found. Five of these were located upstream of genes encoding transporter functions. RNA-seq analysis and reverse-transcription quantitative polymerase reaction assays showed that expression of genes located downstream of these T-boxes was affected by the absence of either cysteine or methionine. Remarkably, the cysK2-ctl1-cysE2 operon, which is associated with te methionine-to-cysteine conversion and is upregulated in the absence of cysteine, showed high read coverage in the 5′-untranslated region and an antisense-RNA in the 3′-untranslated region. This indicates that this operon is regulated by the combination of cis- and antisense-mediated regulation mechanisms. The results of this study may help in the selection of L. paracasei strains to control sulfuric flavor formation in cheese.


September 22, 2019

Co-culture of soil biofilm isolates enables the discovery of novel antibiotics

Bacterial natural products (NPs) are considered to be a promising source of drug discovery. However, the biosynthesis gene clusters (BGCs) of NP are not often expressed, making it difficult to identify them. Recently, the study of biofilm community showed bacteria may gain competitive advantages by the secretion of antibiotics, implying a possible way to screen antibiotic by evaluating the social behavior of bacteria. In this study, we have described an efficient workflow for novel antibiotic discovery by employing the bacterial social interaction strategy with biofilm cultivation, co-culture, transcriptomic and genomic methods. We showed that a biofilm dominant species, i.e. Pseudomonas sp. G7, which was isolated from cultivated soil biofilm community, was highly competitive in four-species biofilm communities, as the synergistic combinations preferred to exclude this strain while the antagonistic combinations did not. Through the analysis of transcriptomic changes in four-species co-culture and the complete genome of Pseudomonas sp. G7, we finally discovered two novel non-ribosomal polypeptide synthetic (NRPS) BGCs, whose products were predicted to have seven and six amino acid components, respectively. Furthermore, we provide evidence showing that only when Pseudomonas sp. G7 was co-cultivated with at least two or three other bacterial species can these BGC genes be induced, suggesting that the co-culture of the soil biofilm isolates is critical to the discovery of novel antibiotics. As a conclusion, we set a model of applying microbial interaction to the discovery of new antibiotics.


September 22, 2019

Analysis of the complete genome sequence of Bacillus atrophaeus GQJK17 reveals its biocontrol characteristics as a plant growth-promoting rhizobacterium

Bacillus atrophaeus GQJK17 was isolated from the rhizosphere of Lycium barbarum L. in China, which was shown to be a plant growth-promoting rhizobacterium as a new biological agent against pathogenic fungi and gram-positive bacteria. We present its biological characteristics and complete genome sequence, which contains a 4,325,818 bp circular chromosome with 4,181 coding DNA sequences and a G+C content of 43.3%. A genome analysis revealed a total of 8 candidate gene clusters for producing antimicrobial secondary metabolites, including surfactin, bacillaene, fengycin, and bacillibactin. Some other antimicrobial and plant growth-promoting genes were also discovered. Our results provide insights into the genetic and biological basis of B. atrophaeus strains as a biocontrol agent for application in agriculture.


September 22, 2019

Clinical Staphylococcus argenteus develops to small colony variants to promote persistent infection.

Staphylococcus argenteus is a novel staphylococcal species (also considered as a part of Staphylococcus aureus complex) that is infrequently reported on, and clinical S. argenteus infections are largely unstudied. Here, we report a persistent and recurrent hip joint infection case in which a S. argenteus strain and its small colony variants (SCVs) strain were successively isolated. We present features of the two S. argenteus strains and case details of their pathogenicity, explore factors that induce S. argenteus SCVs formation in the course of anti-infection therapy, and reveal potential genetic mechanisms for S. argenteus SCVs formation. S. argenteus strains were identified using phenotypic and genotypic methods. The S. argenteus strain XNO62 and SCV strain XNO106 were characterized using different models. S. argenteus SCVs were induced by the administration of amikacin and by chronic infection course based on the clinical case details. The genomes of both strains were sequenced and aligned in a pair-wise fashion using Mauve. The case details gave us important insights on the characteristics and therapeutic strategies for infections caused by S. argenteus and its SCVs. We found that strain XNO62 and SCV strain XNO106 are genetically-related sequential clones, the SCV strain exhibits reduced virulence but enhanced intracellular persistence compared to strain XNO62, thus promoting persistent infection. The induction experiments for S. argenteus SCVs demonstrated that high concentrations of amikacin greatly induce S. argenteus XNO62 to form SCVs, while a chronic infection of S. argenteus XNO62 slightly induces SCVs formation. Potential genetic mechanisms for S. argenteus SCVs formation were revealed and discussed based on genomic alignments. In conclusion, we report the first case of infection caused by S. argenteus and its SCVs strain. More attention should be paid to infections caused by S. argenteus and its SCVs, as they constitute a challenge to current therapeutic strategies. The problem of S. argenteus SCVs should be noticed, in particular when amikacin is used or in the case of a chronic S. argenteus infection.


September 22, 2019

De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution

The wild relatives of rice have adapted to different ecological environments and constitute a useful reservoir of agronomic traits for genetic improvement. Here we present the ~777?Mb de novo assembled genome sequence of Oryza granulata. Recent bursts of long-terminal repeat retrotransposons, especially RIRE2, led to a rapid twofold increase in genome size after O. granulata speciation. Universal centromeric tandem repeats are absent within its centromeres, while gypsy-type LTRs constitute the main centromere-specific repetitive elements. A total of 40,116 protein-coding genes were predicted in O. granulata, which is close to that of Oryza sativa. Both the copy number and function of genes involved in photosynthesis and energy production have undergone positive selection during the evolution of O. granulata, which might have facilitated its adaptation to the low light habitats. Together, our findings reveal the rapid genome expansion, distinctive centromere organization, and adaptive evolution of O. granulata.


September 22, 2019

HapCHAT: adaptive haplotype assembly for efficiently leveraging high coverage in long reads.

Haplotype assembly is the process of assigning the different alleles of the variants covered by mapped sequencing reads to the two haplotypes of the genome of a human individual. Long reads, which are nowadays cheaper to produce and more widely available than ever before, have been used to reduce the fragmentation of the assembled haplotypes since their ability to span several variants along the genome. These long reads are also characterized by a high error rate, an issue which may be mitigated, however, with larger sets of reads, when this error rate is uniform across genome positions. Unfortunately, current state-of-the-art dynamic programming approaches designed for long reads deal only with limited coverages.Here, we propose a new method for assembling haplotypes which combines and extends the features of previous approaches to deal with long reads and higher coverages. In particular, our algorithm is able to dynamically adapt the estimated number of errors at each variant site, while minimizing the total number of error corrections necessary for finding a feasible solution. This allows our method to significantly reduce the required computational resources, allowing to consider datasets composed of higher coverages. The algorithm has been implemented in a freely available tool, HapCHAT: Haplotype Assembly Coverage Handling by Adapting Thresholds. An experimental analysis on sequencing reads with up to 60 × coverage reveals improvements in accuracy and recall achieved by considering a higher coverage with lower runtimes.Our method leverages the long-range information of sequencing reads that allows to obtain assembled haplotypes fragmented in a lower number of unphased haplotype blocks. At the same time, our method is also able to deal with higher coverages to better correct the errors in the original reads and to obtain more accurate haplotypes as a result.HapCHAT is available at http://hapchat.algolab.eu under the GNU Public License (GPL).


September 22, 2019

Raising the stakes: Loss of efflux pump regulation decreases meropenem susceptibility in Burkholderia pseudomallei

Burkholderia pseudomallei, the causative agent of the high-mortality disease melioidosis, is a gram-negative bacterium that is naturally resistant to many antibiotics. There is no vaccine for melioidosis, and effective eradication is reliant on biphasic and prolonged antibiotic administration. The carbapenem drug meropenem is the current gold standard option for treating severe melioidosis. Intrinsic B. pseudomallei resistance toward meropenem has not yet been documented; however, resistance could conceivably develop over the course of infection, leading to prolonged sepsis and treatment failure.We examined our 30-year clinical collection of melioidosis cases to identify B. pseudomallei isolates with reduced meropenem susceptibility. Isolates were subjected to minimum inhibitory concentration (MIC) testing toward meropenem. Paired isolates from patients who had evolved decreased susceptibility were subjected to whole-genome sequencing. Select agent-compliant genetic manipulation was carried out to confirm the molecular mechanisms conferring resistance.We identified 11 melioidosis cases where B. pseudomallei isolates developed decreased susceptibility toward meropenem during treatment, including 2 cases not treated with this antibiotic. Meropenem MICs increased from 0.5-0.75 µg/mL to 3-8 µg/mL. Comparative genomics identified multiple mutations affecting multidrug resistance-nodulation-division (RND) efflux pump regulators, with concomitant overexpression of their corresponding pumps. All cases were refractory to treatment despite aggressive, targeted therapy, and 2 were associated with a fatal outcome.This study confirms the role of RND efflux pumps in decreased meropenem susceptibility in B. pseudomallei. These findings have important ramifications for the diagnosis, treatment, and management of life-threatening melioidosis cases.


September 22, 2019

Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium).

Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III effectors but has more toxin biosynthesis clusters than Psm and P. syringae pv avii. Evolution of cherry pathogenicity was correlated with gain of genes such as hopAR1 and hopBB1 through putative phage transfer and horizontal transfer respectively. By contrast, loss of the avrPto/hopAB redundant effector group was observed in cherry-pathogenic clades. Ectopic expression of hopAB and hopC1 triggered the hypersensitive reaction in cherry leaves, confirming computational predictions. Cherry canker provides a fascinating example of convergent evolution of pathogenicity that is explained by the mix of effector and toxin repertoires acting on a common host.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


September 22, 2019

Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain.

Erwinia amylovora is the causal agent of fire blight, one of the most devastating diseases of apple and pear. Erwinia amylovora is thought to have originated in North America and has now spread to at least 50 countries worldwide. An understanding of the diversity of the pathogen population and the transmission to different geographical regions is important for the future mitigation of this disease. In this research, we performed an expanded comparative genomic study of the Spiraeoideae-infecting (SI) E. amylovora population in North America and Europe. We discovered that, although still highly homogeneous, the genetic diversity of 30 E. amylovora genomes examined was about 30 times higher than previously determined. These isolates belong to four distinct clades, three of which display geographical clustering and one of which contains strains from various geographical locations (‘Widely Prevalent’ clade). Furthermore, we revealed that strains from the Widely Prevalent clade displayed a higher level of recombination with strains from a clade strictly from the eastern USA, which suggests that the Widely Prevalent clade probably originated from the eastern USA before it spread to other locations. Finally, we detected variations in virulence in the SI E. amylovora strains on immature pear, and identified the genetic basis of one of the low-virulence strains as being caused by a single nucleotide polymorphism in hfq, a gene encoding an important virulence regulator. Our results provide insights into the population structure, distribution and evolution of SI E. amylovora in North America and Europe.© 2017 BSPP AND JOHN WILEY & SONS LTD.


September 22, 2019

Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.

An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079T). H. saccincola A7 (= JCM 31827=DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum growth of A7 was at alkaline pH (9.0) and 55°C, compared to pH 7.0 at 60°C for GGR1, and the fatty acid profile of A7 contained 1.7-times more C17:0 iso than GGR1. The draft genome sequence revealed that H. saccincola A7 possessed a cellulosome-like extracellular macromolecular complex, which has also been found for Clostridium thermocellum and C. clariflavum. H. saccincola A7 contained more glycoside hydrolases (GHs) belonging to GH families-11 and -2, and more diversity of xylanolytic enzymes, than C. thermocellum and C. clariflavum. H. saccincola A7 could grow on xylan because it encoded essential genes for xylose metabolism, such as a xylose transporter, xylose isomerase, xylulokinase, and ribulose-phosphate 3-epimerase, which are absent from C. thermocellum. These results indicated that H. saccincola A7 has great potential as a microorganism that can effectively degrade lignocellulosic biomass. Copyright © 2018 Elsevier GmbH. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.